MALLA REDDY INSTITUTE OF TECHNOLOGY \& SCIENCE (SPONSORED BY MALLA REDDY EDUCATIONAL SOCIETY) Permanently Affiliated to JNTUH \& Approved by AICTE, New Delhi NBA Accredited Institution, An ISO 9001:2015 Certified, Approved by UK Accreditation CentreGranted Status of 2(f) \& 12(b) under UGC Act. 1956, Govt. of India.

SIGNALS \& SYSTEMS COURSE FILE

DEPARTMENT OF ELECTRONICS \& COMMUNICATION ENGINEERING (2022-2023)

Faculty In-Charge
G.Haritha

HOD-ECE
Dr.R.Prabhakar

COURSE FILE

SUBJECT: SIGNALS AND SYSTEMS

ACADEMIC YEAR: 2022-2023.
REGULATION: R18

NAME OF THE FACULTY: G.Haritha
DEPARTMENT: ECE
YEAR \& SECTION: II ECE A,B,C
SUBJECT CODE: EC304PC

1.PEO'S, PO'S, PSO'S

PROGRAM EDUCATIONAL OBJECTIVES:

PEO1: To excel in different fields of electronics and communication as well as in multidisciplinary areas. This can lead to a new era in developing a good electronic product.
PEO2: To increase the ability and confidence among the students to solve any problem in their profession by applying mathematical, scientific and engineering methods in a better and efficient way.
PEO3: To provide a good academic environment to the students which can lead to excellence, and stress upon the importance of teamwork and good leadership qualities, written ethical codes and guide lines for lifelong learning needed for a successful professional career.
PEO4: To provide student with a solid foundation to students in all areas like mathematics, science and engineering fundamentals required to solve engineering problems, and also to pursue higher studies.
PEO5: To expose the student to the state of art technology so that the student would be in a position to take up any assignment after his graduation.

PROGRAM OUTCOMES:-

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,and an engineering specialization to the solution of complex engineering problems.
Problem analysis: Identify, formulate, review research literature, and analyze complex engineeringproblems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
Design/development of solutions: Design solutions for complex engineering problems and designsystem components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of theinformation to provide valid conclusions.
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with anunderstanding of the limitations.
The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms ofthe engineering practice.
Individual and team work: Function effectively as an individual, and as a member or leader indiverse teams, and in multidisciplinary settings.
Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reportsand design documentation, make effective presentations, and give and receive clear instructions.
Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, tomanage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage inindependent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES:

PSO1: The ability to absorb and apply fundamental knowledge of core Electronics and Communication Engineering subjects in the analysis, design, and development of various types of integrated electronic systems as well as to interpret and synthesize the experimental data leading to valid conclusions.

PSO2: Competence in using electronic modern IT tools (both software and hardware) for the design and analysis of complex electronic systems in furtherance to research activities.

PSO3: Excellent adaptability to changing work environment, good interpersonal skills as a leader in a team in appreciation of professional ethics and societal responsibilities.

2.Syllabus Copy

EC304PC : SIGNALS AND SYSTEMS (SS)

B.Tech. II Year I Semester

LTPC
3104

Course Objectives:

1. This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
2.To understand the behavior of signal in time and frequency domain
3.To understand the characteristics of LTI systems
4.This gives concepts of Signals and Systems and its analysis using different transform techniques

Course Outcomes:

1. Differentiate various signal functions.
2.Represent any arbitrary signal in time and frequency domain.
3.Understand the characteristics of linear time invariant systems.
4.Analyze the signals with different transform technique

UNIT - I :Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function

UNIT - II:
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.
Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform.

UNIT - III:

Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

UNIT - IV:

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, and Concept of Region of Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.
Z-Transforms: Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.

UNIT - V:
Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling - Aliasing, Introduction to Band Pass Sampling.
Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions, Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum, Relation Between Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by Filtering.

TEXT BOOKS:

1.Signals, Systems \& Communications - B.P. Lathi, 2013, BSP.
2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2 Ed.

REFERENCES:

1. Signals and Systems - Simon Haykin and Van Veen, Wiley 2 Ed.,
2. Signals and Systems - A. Rama Krishna Rao, 2008, TMH
3. Fundamentals of Signals and Systems - Michel J. Robert, 2008, MGH International Edition.
4. Signals, Systems and Transforms - C. L. Philips, J.M.Parr and Eve A.Riskin, 3 Ed., 2004, PE.
5. Signals and Systems - K. Deergha Rao, Birkhauser, 2018.
3.Class Time Table \& Individual Time Table

Class: II/IV B. Tech - I Semester
LECTURE HALL - B1 G04
Branch: ECE-A
W.E. F -28/11/2022

ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Day/ Time	$\begin{gathered} 9: 15 \mathrm{am} \\ \text { to } \\ 10: 15 \mathrm{am} \\ \hline \end{gathered}$	$\begin{gathered} 10: 15 \mathrm{am} \\ \text { to } \\ 11: 15 \mathrm{am} \\ \hline \end{gathered}$	$\begin{gathered} \text { 11:15 am } \\ \text { to } \\ 12: 15 \mathrm{pm} \\ \hline \end{gathered}$	$\begin{gathered} \text { 12:15 pm } \\ \text { to } \\ 1: 15 \mathrm{pm} \end{gathered}$	1:15 pm to 2:00 pm	2:00 pm to 3:00 pm	3:00 pm to 4:00 pm
Monday	EDC	DSD	NATL	PTSP	$\begin{aligned} & \mathbf{L} \\ & \mathbf{U} \end{aligned}$	DSD LAB/EDC LAB	
Tuesday	NATL	PTSP	DSD	SS		EDC	LIBRARY
Wednesday	DSD	PTSP	EDC	NATL		SS	SEMINAR
Thursday	SS	EDC	EDC LAB/DSD LAB		C	PTSP	TUTORIAL
Friday	NATL	SS	PTSP	DSD	${ }_{3} \mathbf{H}$	COI	SPORTS
Saturday	SS	NATL	DSD	EDC		BS LAB	

Probability Theory and Stochastic Process Network Analysis and Transmission Lines Digital System Design
Signals and Systems
Electronic Devices and Circuits
Basic Simulation Lab
Digital System Design Lab
Electronic Devices and Circuits Lab

Constitution of India
Seminar
: Dr. R. Prabhakar
: Mr. N. Srinivasa Rao (CI)
: Mrs. B. Kalpana
Ms. G. Haritha
Mr. G.F. Harish Reddy
Mr. A. Suresh/
Ms. G. Haritha
Ms. Y. Bhagya Lakshmi/
Mr. T. Pavan Vinayak
Mr. G.F. Harish Reddy/
Mr. M. Rajesh/
Mr. K. Srisailam
Mrs. G. Indira
Ms. Y. Bhagya Lakshmi

Class: II/IV B. Tech - I Semester
Branch: ECE-BW.E. F -28/11/2022
ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

$\begin{aligned} & \text { Day/ } \\ & \text { Time } \end{aligned}$	$\begin{gathered} 9: 15 \mathrm{am} \\ \text { to } \\ 10: 15 \mathrm{am} \end{gathered}$	$\begin{gathered} 10: 15 \mathrm{am} \\ \text { to } \\ 11: 15 \mathrm{am} \end{gathered}$	$\begin{gathered} 11: 15 \mathrm{am} \\ \text { to } \\ 12: 15 \mathrm{pm} \end{gathered}$	$\begin{gathered} \text { 12:15 pm } \\ \text { to } \\ 1: 15 \mathrm{pm} \\ \hline \end{gathered}$	$\begin{gathered} 1: 15 \mathrm{pm} \\ \text { to } \\ 2: 00 \mathrm{pm} \end{gathered}$	$\begin{gathered} \text { 2:00 pm } \\ \text { to } \\ \text { 3:00 } \mathrm{pm} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 3:00 pm } \\ & \text { to } \\ & 4: 00 \mathrm{pm} \end{aligned}$
Monday	SS	NATL	EDC	DSD	$\begin{aligned} & \mathbf{L} \\ & \mathbf{U} \\ & \mathbf{N} \\ & \mathbf{C} \\ & \mathbf{H} \end{aligned}$	PTSP	SPORTS
Tuesday	DSD	EDC	DSD LAB/EDC LAB			SS	LIBRARY
Wednesday	PTSP	SS	DSD	EDC		NATL	SEMINAR
Thursday	NATL	DSD	SS	PTSP		BS LAB	
Friday	DSD	PTSP	NATL	SS		EDC	TUTORIAL
Saturday	EDC	NATL	PTSP	COI		EDC LA	DSD LAB

Probability Theory and Stochastic Process Network Analysis and Transmission Lines Digital System Design
Signals and Systems
Electronic Devices and Circuits
Basic Simulation Lab
Digital System Design Lab
Electronic Devices and Circuits Lab

Constitution of India
Seminar

Dr. R. Prabhakar
Mr. K. Y. Srinivas
Mrs. B. Kalpana (CI)
Ms. G. Haritha
Mr. G.F. Harish Reddy
Mr. A. Suresh/
Ms. G. Haritha
Mr. T. Pavan Vinayak /
Ms. Y. Bhagya Lakshmi
Mr. G.F. Harish Reddy/
Mr. M. Rajesh/
Mr. K. Srisailam
Mrs. G. Indira
Mrs. B. Kalpana

LECTURE HALL - B1 G12
ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

Day/ Time	$\begin{gathered} \text { 9:15 am } \\ \text { to } \\ \text { 10:15 am } \end{gathered}$	10:15 am to 11:15 am	$\begin{gathered} \hline 11: 15 \mathrm{am} \\ \text { to } \\ 12: 15 \mathrm{pm} \end{gathered}$	12:15 pm to 1:15 pm	$\begin{gathered} 1: 15 \mathrm{pm} \\ \text { to } \\ 2: 00 \mathrm{pm} \\ \hline \end{gathered}$	$\begin{gathered} \text { 2:00 pm } \\ \text { to } \\ \text { 3:00 pm } \\ \hline \end{gathered}$	3:00 pm to 4:00 pm
Monday	NATL	SS	PTSP	EDC	L	BS LAB	
Tuesday	SS	NATL	DSD	PTSP		PTSP	SPORTS
Wednesday	EDC	DSD	NATL	DSD		DSD LA	EDC LAB
Thursday	PTSP	NATL	COI	SS		EDC	LIB
Friday	DSD	EDC	EDC LAB/DSD LAB		H	SS	SEMINAR
Saturday	PTSP	SS	EDC	NATL		DSD	TUTORIAL

Probability Theory and Stochastic Process
Network Analysis and Transmission Lines
Digital System Design
Signals and Systems
Electronic Devices and Circuits
Basic Simulation Lab
Digital System Design Lab
Electronic Devices and Circuits Lab

Constitution of India
Seminar

Dr. R. Prabhakar
Mr. N. Srinivasa Rao
Mrs. G. Subhashini
Ms. G. Haritha (CI)
Mr. G.F. Harish Reddy
Ms. G. Haritha/
Mr. A. Suresh
Mr. T. Pavan Vinayak/
Ms. Y. Bhagya Lakshmi
Mr. G.F. Harish Reddy/
Mr. M. Rajesh/
Mr. K. Srisailam
Mrs. G. Indira
Ms. G. Haritha

Individual Time Table

	$\begin{aligned} & 9.15- \\ & 10.15 \end{aligned}$	$\begin{aligned} & 10.15- \\ & 11.15 \end{aligned}$	$\begin{aligned} & 11.15- \\ & 12.15 \end{aligned}$	12.15-1.15	1.15-2.00	$\begin{aligned} & 2.00- \\ & 3.00 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 4.00 \end{aligned}$
MON	SS(B)	SS(C)			LUNC		
TUES	SS(C)	SS(C)		SS(A)		SS(B)	
WED		SS(B)				SS(A)	
THUR	SS(A)		SS(B)	SS(C)			
FRI		SS(A)		SS(B)		SS(C)	
SAT	SS(A)	SS(C)					

SIGNALS \& SYSTEMS

4.Students Roll List

MALLA REDDY INSTITUTE OF TECHNOLOGY \& SCIENCE		
ELECTRONICS AND COMMUNICATION ENGINEERING		
Class:	I Year- I Sem	Branch: B.Tech-ECE-A
Batch	2021-2025	A.Y: 2022-2023
S.NO	Roll Number	Name of the Student
1	21S11A0401	ABHIRAM TALLA
2	21S11A0402	AKASH BASHETTY
3	21S11A0403	AKSHAY KUMAR REDDY
4	21S11A0404	ANJANEYULU KAMMARI KUNCHANAGARI
5	21S11A0405	ANKIT RAJ
6	21S11A0406	ASAD PASHA SHAIK
7	21S11A0407	ASHWINI CHETHIPATTI
8	21S11A0408	BHARATH K
9	21S11A0409	BHEESHMA SANDI
10	21S11A0410	CHAITHANYA ANUMANCHINENI
11	21S11A0411	CHANTI BODA
12	21S11A0412	DARSHAN KUMBAM
13	21S11A0413	GANESH VANKUDOTH
14	21S11A0414	SANGHISHETTY
15	21S11A0415	HARIKA SATTI
16	21S11A0416	HASINI BASHETTY
17	21S11A0417	JAGADEESH SANGHISHETTY
18	21S11A0418	JAYA PRAKASH REDDY PANYALA
19	21S11A0419	JEEVANA GATLA
20	21S11A0420	KALYANI JULKAPELLI
21	21S11A0421	MANISHA MULA
22	21S11A0422	MEHAR NIKHIL MANNE
23	21S11A0423	NANDINI MANNE

SIGNALS \& SYSTEMS

24	21S11A0424	NITISH REDDY KOTHAKAPU
25	21S11A0425	PAVAN KUMAR MALLAPPAGARI
26	21S11A0426	PRAKASHAM VADAPARTHI
27	21S11A0427	RAHITH KUMAR KANDLAGUNTA
28	21S11A0428	RAJESHWAR J
29	21S11A0429	RANI ANANTHA
30	21S11A0430	REKHA MANGA
31	21S11A0431	REVATHI MEESALA
32	21S11A0432	RISHAB SAKALE
33	21S11A0433	SAI KRISHNA REDDY
34	21S11A0434	SAI RATNA VEMULA
35	21S11A0435	SAI RITHIK SIBYALA
36	21S11A0436	SAI SRIYA PETTEM
37	21S11A0437	SAI VENKATA KRISHNA MRUDUL
38	21S11A0438	SHANKHABRATA ROY RAYANAPATI
39	21S11A0439	SHARATH CHANDRA REDDY YALLA
40	21S11A0440	SHIVA SAI REDDY SHAGAM
41	21S11A0441	SHIVA SHANKAR BADDULA
42	21S11A0442	SREENIPA NANDELLI
43	21S11A0443	SRIRAM REDDY ANANTHA
44	21S11A0444	SRIRAM REDDY ANANTHA
45	21S11A0445	SYED FAHAD
46	21S11A0446	TUSHWANTH KARUTURI
47	21S11A0447	VAISHNAVI DEVA
48	21S11A0448	VENKAT RAO THOKALA
49	21S11A0449	VENKATA NAGA VARSHITHA POLISETTY
50	21S11A0450	VIJAY KUMAR KASAM
51	21S11A0451	VINAY SANGEM
52	21S11A0452	VISHNU VANGARI

MALLA REDDY INSTITUTE OF TECHNOLOGY \& SCIENCE		
ELECTRONICS AND COMMUNICATION ENGINEERING		
Class: II Year- I Sem		Branch: B.Tech-ECE-B
Batch: 2021-2025		A.Y: 2022-2023
1	21S11A0453	AJAY KUMAR REDDY VITTA
2	21S11A0454	AKHILA BHUKYA
3	21S11A0455	AKSHAY GOUD DURGAM
4	21S11A0456	AKSHAY MIRUPALA
5	21S11A0457	ANJANEYULU B
6	21S11A0458	ARJUN VISLAVATH
7	21S11A0459	BHANU SAI NAGENDER PAPPALA
8	21S11A0460	BHARGAVI MANDHUGULA
9	21S11A0461	CHETHAN THEEGALA
10	21S11A0462	DEVI PRIYANKA NARIKALAPA
11	21S11A0463	ESHWAR BOLLAPALLI
12	21S11A0464	ESHWAR VENKATA SATYA SAI
13	21S11A0465	GANGADHAR REDDY CHALLA
14	21S11A0466	IAI SINGH ROTHVAN
15	21S11A0467	JEEVAMRUTHA AKARAPU
16	21S11A0468	KARTHIK KUMAR C
17	21S11A0469	KRISHNA TOLUPUNURI
18	21S11A0470	MAHESH NOMULA
19	21S11A0471	MANI VEERA NAGENDRA DASARI
20	21S11A0472	MANOJ KUMAR VELISHALA
21	21S11A0473	NAGA RAJU RAVULA
22	21S11A0474	NAGARAJU ARUGONDA
23	21S11A0475	NEETHU BOKKA
24	21S11A0476	NIKHITHA GANGALA
25	21S11A0477	PAVAN KUMAR UPUTURI
26	21S11A0478	PAVAN YALKAPALLY
27	21S11A0479	POONAM SAHU
28	21S11A0480	PRAKASH KATLA

SIGNALS \& SYSTEMS

29	$21 S 11 A 0481$	PREMKANTH KOMMINENI
30	$21 S 11 A 0482$	RAJENDER VANKUDOTH
31	$21 S 11 A 0483$	RAKESH KRISHNA JAKKA
32	$21 S 11 A 0484$	ROHITH REDDY PULAKANTI
33	$21 S 11 A 0485$	SAI KUMAR REDDY MANDAPATI
34	$21 S 11 A 0486$	SAI PRASAD K
35	$21 S 11 A 0487$	SAI PRASAD REDDY AKKENAPALLY
36	$21 S 11 A 0488$	SAICHAND KARRA
37	$21 S 11 A 0489$	SAINADH TEEGALA
38	$21 S 11 A 0490$	SAITEJA KODHATI
39	$21 S 11 A 0491$	SAKETHBABUVARAGANI
40	$21 S 11 A 0492$	SIDDARTHA YADAV THOTLA
41	$21 S 11 A 0493$	SIVA KIRAN AKSHINTALA
42	$21 S 11 A 0494$	SPANDANA SEEDULA
43	$21 S 11 A 0495$	SRIRAM SINGARAM
44	$21 S 11 A 0496$	SRIVANI GEDDADA
45	$21 S 11 A 0497$	SUDHEER KUMAR TOKALA
46	$21 S 11 A 0498$	TEJA SRI GURRALA
47	$21 S 11 A 0499$	THANU SRI REDDY MALLE
48	$21 S 11 A 04 A 0$	VAISHNAVI CHEDDE
49	$21 S 11 A 04 A 1$	VAMSHI KRISHNA AMARAGONDA
50	$21 S 11 A 04 A 2$	VIGNESH VALAGIRI
51	$21 S 11 A 04 A 3$	SYED KALEEMULLAH HUSSAIN
52	$21 S 11 A 04 A 4$	RICHA MIDDE

SIGNALS \& SYSTEMS

MALLA REDDY INSTITUTE OF TECHNOLOGY \& SCIENCE		
ELECTRONICS AND COMMUNICATION ENGINEERING		
Clas	I Year- I Sem	Branch: B.Tech-ECE-C
Batc	2021-2025	A.Y: 2022-2023
1	22S15A0401	AJAY SAMMETA
2	22S15A0402	AKHILA BODIGE
3	22S15A0403	AKHILA MANGALI
4	22S15A0404	AMULYA AMBATI
5	22S15A0405	ASHWINI KENGUVA
6	22S15A0406	BHARATH JANIGA
7	22S15A0407	BHARATH KUSAM
8	22S15A0408	CHANDU GOUD BAZARU
9	22S15A0409	DEEPAK GANGONI
10	22S15A0410	GEETHIKA KANDHI
11	22S15A0411	HARITHA KALYANI VOLETI
12	22S15A0412	JAYANTH GORINTA
13	22S15A0413	MADHAVA ERRABOINA
14	22S15A0414	MANASA ALLURI
15	22S15A0415	NAGARAJU VAKKALA
16	22S15A0416	NAVEEN KARANKOT NAGAKAR
17	22S15A0417	NIKHITH GAJAWADA
18	22S15A0418	PRAVEEN KUMAR BOLLA
19	22S15A0419	PRIYAM GOLLACHANNU
20	22S15A0420	RAJESH THOLEM
21	22S15A0421	RAJU PIDUGU
22	22S15A0422	RITHISH REDDY VAKA
23	22S15A0423	ROHITH KUMAR RANGU
24	22S15A0424	SAI BHARATH SEERA
25	22S15A0425	SAI KAMAL POLU DASARI
26	22S15A0426	SAI SRINIVAS KURAPATI
27	22S15A0427	SAI VANI TIRUPATI
28	22S15A0428	SAMPATH KAMERA

SIGNALS \& SYSTEMS

29	22 S15A0429	SHIVA KUMAR MACHKURI
30	22 S15A0430	SHIVA ORSU
31	22 S15A0431	SHIVANI ANKENAPALLY
32	22 S15A0432	SHIVANI MIRYALA
33	22 S15A0433	SHIVANI PADALA
34	22 S15A0434	SHRAVANI MEESALA
35	22 S15A0435	SHRUTHI KADAVERGU
36	22 S15A0436	SRI LEKHA KANDE
37	22 S15A0437	SUBRAMANYAM KOMARTI
38	22 S15A0438	SUMANTH KAVATI
39	22 S15A0439	SUSHIL KUMAR SANDAVENI
40	$22 S 15 A 0440$	SWAPNA JANNE
41	$22 S 15 A 0441$	UDAY KIRAN BETHAPUDI
42	$22 S 15 A 0442$	VENKATESH DASARI
43	$22 S 15 A 0443$	VYSHNAVI GARIPELLI
44	$22 S 15 A 0444$	YEJNESWARA SAI SURYA KIRAN NAKKA

5.Lesson Plan

Name of the Faculty: G.Haritha	
Course Number	$:$ EC304PC
Program	: B.Tech
Year/Sem	:II-I

Academic Year: 2022-2023
Course Name: SIGNALS \& SYSTEMS Branch : ECE
Section : A,B, C

	2.1		1	Continuous time periodic signals,
	2.2	10	1	Dirichlet's conditions
	2.3		1	Trigonometric Fourier Series and Exponential Fourier Series,
	2.4		1	problems
	2.5		2	Complex Fourier spectrum
	2.6	10	2	Properties of Fourier Series
			1	Fourier Transforms:
	2.8		1	Deriving Fourier Transform from Fourier series,
	2.9		1	Fourier Transform of arbitrary signal
	2.10		1	Fourier Transform of standard signals,
	2.11		1	Fourier Transform of Periodic Signals,
	2.12		1	Properties of Fourier Transform
	2.13		1	Fourier Transforms involving Impulse function and Signum function
	2.14		1	Introduction to Hilbert Transform
	3.1		1	Signal Transmission through Linear Systems: Linear System
	3.2		1	Impulse response, Response of a Linear System,
	3.3		1	Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System,
III	3.4		2	Transfer function of a LTI System, Filter characteristic of Linear System
	3.5		1	Distortion less transmission through a system, Signal bandwidth, System
	3.6		1	Ideal LPF, HPF, and BPF characteristics,
	3.7		2	Causality and Paley-Wiener criterion for physical realization

SIGNALS \& SYSTEMS

	3.8		1	Relationship between Bandwidth and rise time,
	39		1	Convolution and Correlation of Signals,
			1	Concept of convolution in Time domain and Frequency domain,
	311		1	problems
	3.12		1	Graphical representation of Convolution
	4	14	1	Laplace Transforms: Laplace Transforms (L.T),
	4.1		1	Inverse Laplace Transform, and Concept of Region of Convergence (ROC) for Lap
	4.2		2	problems
IV	4.3		1	Properties of L.T,
	4.4		1	Relation between L.T and F.T of a signal,
	4.5		1	Z-Transforms: Concept of Z- Transform of a Discrete Sequence,
	4.6		1	Distinction between Laplace, Fourier and Z Transforms,
	4.7		1	Region of Convergence in Z-Transform,
	4.8		1	Constraints on ROC for various classes of signals,
	4.9		2	Solution of differential equations using ZT
	4.10	10	1	Inverse Z-transform, Properties of Z-transforms
V	5		1	Sampling theorem:
	5.1		2	Graphical and analytical proof for Band Limited Signals
	5.2		1	Impulse Sampling, Natural and Flat top Sampling,
	5.3		1	Reconstruction of signal from its samples,
	5.4		1	Effect of under sampling - Aliasing, Introduction to Band Pass Sampling
	5.5			Correlation: Cross Correlation and Auto Correlation of Functions, Properties

1	Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum,
	Relation between Auto Correlation function and Energy/Power spectral density funct
	Relation between Convolution and Correlation,
	Detection of periodic signals in the presence of Noise by Correlation,
	Extraction of signal from noise by filtering

TEXT BOOKS:

1.Signals, Systems \& Communications - B.P. Lathi, 2013, BSP.
2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2 Ed.

REFERENCES:

1. Signals and Systems - Simon Haykin and Van Veen, Wiley 2 Ed.,
2. Signals and Systems - A. Rama Krishna Rao, 2008, TMH
3. Fundamentals of Signals and Systems - Michel J. Robert, 2008, MGH International Edition.
4. Signals, Systems and Transforms - C. L. Philips, J.M.Parr and Eve A.Riskin, 3 Ed., 2004, PE.
5. Signals and Systems - K. Deergha Rao, Birkhauser, 2018.
6.UNIT WISE LECTURE NOTES
a) Notes of Units

SIGNALS AND SYSTEMS

II B. Tech I semester (JNTUH-R18)

ELECTRONICS \& COMMUNICATION ENGINEERING

EC304PC: SIGNALS AND SYSTEMS

B.Tech. II Year I Semester

L	T	P	C
3	1	0	$4 S$

Course Objectives:

1. To understand the structure of a computer and its operations.
2. To understand the RTL and Micro-level operations and control in a computer.
3. Understanding the concepts of I/O and memory organization and operating systems.

Course Outcomes:

1. Able to visualize the organization of different blocks in a computer.
2. Able to use micro-level operations to control different units in a computer.
3. Able to use Operating systems in a computer.

Unit I :

Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

UNIT -II:
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.
Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform.

UNIT - III:

Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution

UNIT - IV:
Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, and Concept of Region of Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.
Z-Transforms: Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.

```
UNIT - V:
```

Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling - Aliasing, Introduction to Band Pass Sampling.
Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation

Functions, Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum, Relation Between Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by Filtering

TEXT BOOKS:

1.Signals, Systems \& Communications - B.P. Lathi, 2013, BSP.
2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2 Ed.

REFERENCES:

1. Signals and Systems - Simon Haykin and Van Veen, Wiley 2 Ed.,
2. Signals and Systems - A. Rama Krishna Rao, 2008, TMH
3. Fundamentals of Signals and Systems - Michel J. Robert, 2008, MGH International Edition.
4. Signals, Systems and Transforms - C. L. Philips, J.M.Parr and Eve A.Riskin, 3 Ed., 2004, PE.
5. Signals and Systems - K. Deergha Rao, Birkhauser, 2018.

UNIT-I

SIGNAL ANALYSIS

CONTENTS:

1.1. Introduction.

1.2. Classification of signals.
1.3. Standard signals.
1.4. Operations on signals.
1.5. Analogy between vectors and signals.
1.6. Orthogonal signal space.
1.7. Evaluation of Mean Square Error.
1.8. Representation of a signal by complete set of orthogonal functions.
1.9. Orthogonality in complex function

Unit- I

SIGNALS \& SYSTEMS

There is a perfect analogy between vectors and signals.

Vector

A vector contains magnitude and direction. The name of the vector is denoted by bold face type and their magnitudeis denoted by light face type.

Example: V is a vector with magnitude V . Consider two vectors V 1 and V 2 as shown in the following diagram. Let the component of V 1 along with V 2 is given by C12V2. The component of a vector V1 along with the vector V 2 canobtained by taking a perpendicular from the end of V 1 to the vector V 2 as shown in diagram:

The vector V1 can be expressed in terms of vector
$\mathrm{V} 2 \mathrm{~V} 1=\mathrm{C} 12 \mathrm{~V} 2+\mathrm{Ve}$
Where Ve is the error vector.
But this is not the only way of expressing vector V1 in terms of V2. The alternate possibilities are:
V1=C1V2+Ve1

$\mathrm{V} 2=\mathrm{C} 2 \mathrm{~V} 2+\mathrm{Ve} 2$

SIGNALS \&

The error signal is minimum for large component value. If $\mathrm{C} 12=0$, then two signals are said to be orthogonal.
Dot Product of Two Vectors V1 . V2 $=$ V1.V2 $\cos \theta$
$\theta=$ Angle between V1 and V2 V1. V2 = V2.V1
From the diagram, components of V1 a long V2 = C 12 V2

$$
\begin{aligned}
& \frac{V_{1} \cdot V_{2}}{V_{2}=C_{1} 2 V_{2}} \\
\Rightarrow & C_{12}=\frac{V_{1} \cdot V_{2}}{V_{2}}
\end{aligned}
$$

The concept of orthogonality can be applied to signals. Let us consider two signals $\mathrm{f} 1(\mathrm{t})$ and $\mathrm{f} 2(\mathrm{t})$.
Similar to vectors, you can approximate $\mathrm{f} 1(\mathrm{t})$ in terms of $\mathrm{f} 2(\mathrm{t})$ as $\mathrm{f} 1(\mathrm{t})=\mathrm{C} 12 \mathrm{f} 2(\mathrm{t})+\mathrm{fe}(\mathrm{t})$ for $(\mathrm{t} 1<\mathrm{t}$ $<\mathrm{t} 2$)
$\Rightarrow \mathrm{fe}(\mathrm{t})=\mathrm{f} 1(\mathrm{t})-\mathrm{C} 12 \mathrm{f} 2(\mathrm{t})$
One possible way of minimizing the error is integrating over the interval t1 to t2.

$$
\begin{gathered}
\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{e}(t)\right] d t \\
\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{1}(t)-C_{12} f_{2}(t)\right] d t
\end{gathered}
$$

However, this step also does not reduce the error to appreciable extent. This can be corrected by taking the square oferror function.

$$
\begin{aligned}
& \varepsilon=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{e}(t)\right]^{2} d t \\
& \Rightarrow \frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{e}(t)-C_{12} f_{2}\right]^{2} d t
\end{aligned}
$$

Where ε is the mean square value of error signal. The value of C 12 which minimizes the error, you need to calculate $d \varepsilon / d C 12=0$

$$
\begin{aligned}
& -\Rightarrow \frac{d}{d C_{12}}\left[\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{1}(t)-C_{12} f_{2}(t)\right]^{2} d t\right]=0 \\
& \Rightarrow \frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[\frac{d}{d C_{12}} f_{1}^{2}(t)-\frac{d}{d C_{12}} 2 f_{1}(t) C_{12} f_{2}(t)+\frac{d}{d C_{12}} f_{2}^{2}(t) C_{12}^{2}\right] d t=0
\end{aligned}
$$

Derivative of the terms which do not have C12 term are zero.

$$
\Rightarrow \int_{t_{1}}^{t_{2}}-2 f_{1}(t) f_{2}(t) d t+2 C_{12} \int_{t_{1}}^{t_{2}}\left[f_{2}^{2}(t)\right] d t=0
$$

$$
\text { If } C_{12}=\frac{\int_{1}^{2} f_{1}(t) f_{2}(t) d t}{\int_{t_{1}^{2}}^{2} f_{2}^{2}(t) d t} \text { component is zero, then two signals are said to be orthogonal. }
$$

Put C12 $=0$ to get condition for orthogonality.

$$
\begin{gathered}
0=\frac{\int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}(t) d t}{\int_{t_{1}}^{t_{2}} f_{2}^{2}(t) d t} \\
\int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}(t) d t=0
\end{gathered}
$$

Orthogonal Vector Space

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider a three dimensional vectorspace as shown below:

$$
\begin{aligned}
& V_{X} \cdot V_{X}=V_{Y} \cdot V_{Y}=V_{Z} \cdot V_{Z}=1 \\
& V_{X} \cdot V_{Y}=V_{Y} \cdot V_{Z}=V_{Z} \cdot V_{X}=0
\end{aligned}
$$

We can write above conditions as
The vector A can be represented in terms of its components and unit vectors as

$$
V_{a} \cdot V_{b}= \begin{cases}1 & a=b \\ 0 & a \neq b\end{cases}
$$

$$
A=X_{1} V_{X}+Y_{1} V_{Y}+Z_{1} V_{Z} \cdots \cdots \cdots \cdots \cdots \cdot(1)
$$

Any vectors in this three dimensional space can be represented in terms of these three unit vectors only.If you consider n dimensional space, then any vector A in that space can be represented as

$$
A=X_{1} V_{X}+Y_{1} V_{Y}+Z_{1} V_{Z}+\ldots+N_{1} V_{N} \ldots \ldots \text { (2) }
$$

As the magnitude of unit vectors is unity for any vector A The component of A along x axis = A.VX The component of A along Y axis $=\mathrm{A} . \mathrm{VY}$ The component of A along Z axis $=\mathrm{A} . \mathrm{VZ}$

Similarly, for n dimensional space, the component of A along some G axis
$=A . V G(3)$
Substitute equation 2 in equation 3 .

$$
\begin{aligned}
& \Rightarrow C G=\left(X_{1} V_{X}+Y_{1} V_{Y}+Z_{1} V_{Z}+\ldots+G_{1} V_{G} \ldots+N_{1} V_{N}\right) V_{G} \\
& =X_{1} V_{X} V_{G}+Y_{1} V_{Y} V_{G}+Z_{1} V_{Z} V_{G}+\ldots+G_{1} V_{G} V_{G} \ldots+N_{1} V_{N} V_{G} \\
& =G_{1} \quad \text { since } V_{G} V_{G}=1 \\
& I f V_{G} V_{G} \neq 1 \text { i.e. } V_{G} V_{G}=k \\
& A V_{G}=G_{1} V_{G} V_{G}=G_{1} K \\
& G_{1}=\frac{\left(A V_{G}\right)}{K}
\end{aligned}
$$

Orthogonal Signal Space

Let us consider a set of n mutually orthogonal functions $\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t}) \ldots \mathrm{xn}(\mathrm{t})$ over the interval t 1 to t 2 . As these functions are orthogonal to each other, any two signals $x j(t), x k(t)$ have to satisfy the orthogonality condition. i.eLet a function $\mathrm{f}(\mathrm{t})$, it can be approximated with this orthogonal signal space by adding the components alongmutually orthogonal signals i.e.

$$
\begin{aligned}
& f(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\ldots+C_{n} x_{n}(t)+f_{e}(t) \\
& \quad=\Sigma_{r=1}^{n} C_{r} x_{r}(t) \\
& f(t)=f(t)-\Sigma_{r=1}^{n} C_{r} x_{r}(t)
\end{aligned}
$$

Mean sqaure error $\varepsilon=\frac{1}{t_{2}-t_{2}} \int_{t_{1}}^{t_{2}}\left[f_{e}(t)\right]^{2} d t$

$$
=\frac{1}{t_{2}-t_{2}} \int_{t_{1}}^{t_{2}}\left[f[t]-\sum_{r=1}^{n} C_{r} x_{r}(t)\right]^{2} d t
$$

The component which minimizes the mean square error can be found by

$$
\frac{d \varepsilon}{d C_{1}}=\frac{d \varepsilon}{d C_{2}}=\ldots=\frac{d \varepsilon}{d C_{k}}=0
$$

Let us consider $\frac{d \varepsilon}{d C_{k}}=0$

$$
\frac{d}{d C_{k}}\left[\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f(t)-\Sigma_{r=1}^{n} C_{r} x_{r}(t)\right]^{2} d t\right]=0
$$

All terms that do not contain Ck is zero. i.e. in summation, $\mathrm{r}=\mathrm{k}$ term remains and all other terms are zero.

Mean Square Error:

The average of square of error function $\mathrm{fe}(\mathrm{t})$ is called as mean square error. It is denoted by ε (epsilon).

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}}-2 f(t) x_{k}(t) d t+2 C_{k} \int_{t_{1}}^{t_{2}}\left[x_{k}^{2}(t)\right] d t=0 \\
\Rightarrow C_{k}=\frac{\int_{t_{1}}^{t_{2}} f(t) x_{k}(t) d t}{i n t_{t_{1}}^{t_{2}} x_{k}^{2}(t) d t}
\end{gathered}
$$

$$
\Rightarrow \int_{t_{1}}^{t_{2}} f(t) x_{k}(t) d t=C_{k} K_{k}
$$

$\varepsilon=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{e}(t)\right]^{2} d t$
$=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}\left[f_{e}(t)-\Sigma_{r=1}^{n} C_{r} x_{r}(t)\right]^{2} d t$

$$
=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}}\left[f_{e}^{2}(t)\right] d t+\sum_{r=1}^{n} C_{r}^{2} \int_{t_{1}}^{t_{2}} x_{r}^{2}(t) d t-2 \Sigma_{r=1}^{n} C_{r} \int_{t_{1}}^{t_{2}} x_{r}(t) f(t) d t\right.
$$

You know that $C_{r}^{2} \int_{t_{1}}^{t_{2}} x_{r}^{2}(t) d t=C_{r} \int_{t_{1}}^{t_{2}} x_{r}(t) f(d) d t=C_{r}^{2} K_{r}$

$$
\begin{aligned}
& \varepsilon=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}}\left[f^{2}(t)\right] d t+\Sigma_{r=1}^{n} C_{r}^{2} K_{r}-2 \Sigma_{r=1}^{n} C_{r}^{2} K_{r}\right] \\
& \quad=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}}\left[f^{2}(t)\right] d t-\Sigma_{r=1}^{n} C_{r}^{2} K_{r}\right] \\
& \therefore \varepsilon=\frac{1}{t_{2}-t_{1}}\left[\int_{t_{1}}^{t_{2}}\left[f^{2}(t)\right] d t+\left(C_{1}^{2} K_{1}+C_{2}^{2} K_{2}+\ldots+C_{n}^{2} K_{n}\right)\right]
\end{aligned}
$$

The above equation is used to evaluate the mean square error.

Closed and Complete Set of Orthogonal Functions:

Let us consider a set of n mutually orthogonal functions $x 1(t), x 2(t) \ldots x n(t)$ over the interval $t 1$ to $t 2$. This is called asclosed and complete set when there exist no function $f(t)$ satisfying the condition

$$
\int_{t_{1}}^{t_{2}} f(t) x_{k}(t) d t=0
$$

If this function is satisfying the equation

$$
\int_{t_{1}}^{t_{2}} f(t) x_{k}(t) d t=0
$$

SIGNALS \& SYSTEMS

For $k=1,2, .$. then $\mathrm{f}(\mathrm{t})$ is said to be orthogonal to each and every function of orthogonal set. This set is incomplete without $f(t)$. It becomes closed and complete set when $f(t)$ is included.
$\mathrm{f}(\mathrm{t})$ can be approximated with this orthogonal set by adding the components along mutually orthogonal signals i.e.

$$
f(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)+\ldots+C_{n} x_{n}(t)+f_{e}(t)
$$

If the infinite series $C_{1} x_{1}(t)+C_{2} x_{2}(t)+\ldots+C_{n} x_{n}(t)$ converges to ft then mean square error is zero.

Orthogonality in Complex Functions:

If $\mathrm{f} 1(\mathrm{t})$ and $\mathrm{f} 2(\mathrm{t})$ are two complex functions, then $\mathrm{f} 1(\mathrm{t})$ can be expressed in terms of $\mathrm{f} 2(\mathrm{t})$ as $f 1(t)=C 12 f 2(t)$.. with negligible error

$$
\text { Where } C_{12}=\frac{\int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}^{*}(t) d t}{\int_{t_{1}}^{t_{2}}\left|f_{2}(t)\right|^{2} d t}
$$

Where $\mathrm{f} 2^{*}(\mathrm{t})$ is the complex conjugate of $\mathrm{f} 2(\mathrm{t})$ If $\mathrm{f} 1(\mathrm{t})$ and $\mathrm{f} 2(\mathrm{t})$ are orthogonal then $\mathrm{C} 12=0$

$$
\begin{aligned}
& \frac{\int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}^{*}(t) d t}{\int_{t_{1}}^{t_{2}}\left|f_{2}(t)\right|^{2} d t}=0 \\
\Rightarrow & \int_{t_{1}}^{t_{2}} f_{1}(t) f_{2}^{*}(d t)=0
\end{aligned}
$$

The above equation represents orthogonality condition in complex functions.

Ramp Signal

Ramp signal is denoted by $\mathrm{r}(\mathrm{t})$, and it is defined as $\mathrm{r}(\mathrm{t})= \begin{cases}t & t \geqslant 0 \\ 0 & t<0\end{cases}$

$-r(t)$	$\int u(t)=\int 1=t=r(t)$		
2			
0	1	2	

Area under unit ramp is unity.

Parabolic Signal

Parabolic signal can be defined as $\mathrm{x}(\mathrm{t})=\left\{\begin{array}{cc}t^{2} / 2 & t \geqslant 0 \\ 0 & t<0\end{array}\right.$

$$
\begin{aligned}
\iint u(t) d t=\int r(t) d t=\int t d t=\frac{t^{2}}{2}=\text { parabolicsignal } \\
\Rightarrow u(t)=\frac{d^{2} x(t)}{d t^{2}} \\
\Rightarrow r(t)=\frac{d x(t)}{d t}
\end{aligned}
$$

Signum Function

$$
\left\{\begin{array}{cl}
\mathbf{1} & t>0 \\
\mathbf{0} & t=0 \\
-\mathbf{1} & t<0
\end{array}\right.
$$

Signum function is denoted as $\operatorname{sgn}(\mathrm{t})$. It is defined as $\operatorname{sgn}(\mathrm{t})=$

Exponential Signal

Exponential signal is in the form of $\mathrm{x}(\mathrm{t})=e \alpha t$
.The shape of exponential can be defined by α
Case i: if $\alpha=0 \rightarrow \mathrm{x}(\mathrm{t})=e 0=1$

Case ii: if $\alpha<0$ i.e. -ve then $\mathrm{x}(\mathrm{t})=e-\alpha t$
. The shape is called decaying exponential.

Case iii: if $\alpha>0$ i.e. +ve then $\mathrm{x}(\mathrm{t})=e \alpha t$
. The shape is called raising exponential.

Rectangular Signal

Let it be denoted as $\mathrm{x}(\mathrm{t})$ and it is defined as

$$
x(t)=A \operatorname{rect}\left[\frac{r}{T}\right]
$$

$$
\text { ex: } 4 \operatorname{rect}\left[\frac{r}{6}\right]
$$

Triangular Signal

Let it be denoted as $\mathrm{x}(\mathrm{t})$

$$
x(t)=A\left[1-\frac{|t|}{T}\right]
$$

Sinusoidal Signal
Sinusoidal signal is in the form of $\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (w 0 \pm \phi)$ or $\mathrm{A} \sin (w 0 \pm \phi)$
A
-A

Where T0 $=2 \pi / w 0$

Classification of Signals:

Signals are classified into the following categories:

- Continuous Time and Discrete Time Signals
- Deterministic and Non-deterministic Signals
- Even and Odd Signals
- Periodic and Aperiodic Signals
- Energy and Power Signals
- Real and Imaginary Signals

Triangular Signal

Let it be denoted as $\mathrm{x}(\mathrm{t})$

Sinusoidal Signal

Sinusoidal signal is in the form of $\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (w 0 \pm \phi)$ or $\mathrm{A} \sin (w 0 \pm \phi)$

Signals are classified into the following categories:

- Continuous Time and Discrete Time Signals
- Deterministic and Non-deterministic Signals
- Even and Odd Signals
- Periodic and Aperiodic Signals
- Energy and Power Signals
- Real and Imaginary Signals

SIGNALS \& SYSTEMS

Continuous Time and Discrete Time Signals

A signal is said to be continuous when it is defined for all instants of time.

A signal is said to be discrete when it is defined at only discrete instants of time/

Deterministic and Non-deterministic Signals

A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time. Or,signals which can be defined exactly by a mathematical formula are known as deterministic signals.

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time. Non-deterministic signals are random in nature hence they are called random signals. Random signals cannot bedescribed by a mathematical equation. They are modelled in probabilistic terms.

Even and Odd Signals

A signal is said to be even when it satisfies the condition $\mathrm{x}(\mathrm{t})=\mathrm{x}(-\mathrm{t})$
Example 1: t2, t4... cost etc.
Let $\mathrm{x}(\mathrm{t})=\mathrm{t} 2$
$\mathrm{x}(-\mathrm{t})=(-\mathrm{t}) 2=\mathrm{t} 2=\mathrm{x}(\mathrm{t})$
$\therefore \mathrm{t} 2$ is even function
Example 2: As shown in the following diagram, rectangle function $x(t)=x(-t)$ so it is also even function.

A signal is said to be odd when it satisfies the condition $\mathrm{x}(\mathrm{t})=-\mathrm{x}(-\mathrm{t})$
Example: $\mathrm{t}, \mathrm{t} 3$... And $\sin \mathrm{t}$ Let $\mathrm{x}(\mathrm{t})=\sin$
$\operatorname{tx}(-\mathrm{t})=\sin (-\mathrm{t})=-\sin \mathrm{t}=-\mathrm{x}(\mathrm{t})$
$\therefore \sin \mathrm{t}$ is odd function.
Any function $f(t)$ can be expressed as the sum of its even function $f e(t)$ and odd function $f o(t) . f(t)=f e(t$) $+f 0(t)$
$f e(t)=1 / 2[f(t)+f(-t)]$

Periodic and Aperiodic Signals

A signal is said to be periodic if it satisfies the condition $x(t)=x(t+T)$ or $x(n)=x(n+N)$. Where $\mathrm{T}=$ fundamental time period, $1 / \mathrm{T}=\mathrm{f}=$ fundamental frequency.
(
$\stackrel{\mathrm{T}_{0}}{\longrightarrow}$

The above signal will repeat for every time interval T 0 hence it is periodic with period T 0 .

Energy and Power Signals

A signal is said to be energy signal when it has finite energy.

$$
\text { Energy } E=\int_{-\infty}^{\infty} x^{2}(t) d t
$$

A signal is said to be power signal when it has finite power.

$$
\text { Power } P=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x^{2}(t) d t
$$

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy norpower signal.

Power of energy signal $=0$ Energy of power signal $=\infty$

Real and Imaginary Signals

A signal is said to be real when it satisfies the condition $x(t)=x^{*}(t)$ A signal is said to be odd when it satisfiesthe condition $x(t)=-x^{*}(t)$ Example:
If $x(t)=3$ then $x^{*}(t)=3^{*}=3$ here $x(t)$ is a real signal.
If $x(t)=3 j$ then $x^{*}(t)=3 j^{*}=-3 j=-x(t)$ hence $x(t)$ is a odd signal.
Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part should bezero.

Basic operations on Signals:

There are two variable parameters in general:

1. Amplitude
2. Time
(1) The following operation can be performed with amplitude:

Amplitude Scaling

$C \mathrm{x}(\mathrm{t})$ is a amplitude scaled version of $\mathrm{x}(\mathrm{t})$ whose amplitude is scaled by a factor C .

Addition

Addition of two signals is nothing but addition of their corresponding amplitudes. This can be best explained byusing the following example:

As seen from the previous diagram,
$-10<\mathrm{t}<-3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})=0+2=2$
$-3<\mathrm{t}<3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})=1+2=33<\mathrm{t}<10$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})=0+2=2$

Subtraction

subtraction of two signals is nothing but subtraction of their corresponding amplitudes.This can be best explained by the following example:

As seen from the diagram above,
$-10<\mathrm{t}<-3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=0-2=-2$
$-3<\mathrm{t}<3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=1-2=-13<\mathrm{t}<10$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=0-2=-2$

Multiplication

Multiplication of two signals is nothing but multiplication of their corresponding amplitudes. This can be bestexplained by the following example:

As seen from the diagram above,
$-10<\mathrm{t}<-3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t}) \times \mathrm{x} 2(\mathrm{t})=0 \times 2=0$
$-3<\mathrm{t}<3$ amplitude of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=1 \times 2=23<\mathrm{t}<10 \operatorname{amplitude}$ of $\mathrm{z}(\mathrm{t})=\mathrm{x} 1(\mathrm{t})-\mathrm{x} 2(\mathrm{t})=0 \times 2=0$
(2) The following operations can be performed with time:

Time Shifting

$\mathrm{x}(\mathrm{t} \pm \mathrm{t} 0)$ is time shifted version of the signal $\mathrm{x}(\mathrm{t}) . \mathrm{x}(\mathrm{t}+\mathrm{t} 0) \rightarrow$ negative shiftx ($\mathrm{t}-\mathrm{t} 0$) \rightarrow positive shift

Time Scaling
$x(A t)$ is time scaled version of the signal $x(t)$. where A is always positive.
$|\mathrm{A}|>1 \rightarrow$ Compression of the signal
$|A|<1 \rightarrow$ Expansion of the signal

Note: $u(a t)=u(t)$ time scaling is not applicable for unit step function.

Time Reversal

$x(-t)$ is the time reversal of the signal $x(t)$.

Classification of Systems:

Systems are classified into the following categories:

- Liner and Non-liner Systems
- Time Variant and Time Invariant Systems
- Liner Time variant and Liner Time invariant systems
- Static and Dynamic Systems
- Causal and Non-causal Systems
- Invertible and Non-Invertible Systems
- Stable and Unstable Systems

Linear and Non-linear Systems

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two systemswith inputs as $\mathrm{x} 1(\mathrm{t}), \mathrm{x} 2(\mathrm{t})$, and outputs as $\mathrm{y} 1(\mathrm{t}), \mathrm{y} 2(\mathrm{t})$ respectively. Then, according to the superposition and homogenate principles,
$\mathrm{T}[\mathrm{a} 1 \mathrm{x} 1(\mathrm{t})+\mathrm{a} 2 \mathrm{x} 2(\mathrm{t})]=\mathrm{a} 1 \mathrm{~T}[\mathrm{x} 1(\mathrm{t})]+\mathrm{a} 2 \mathrm{~T}[\mathrm{x} 2(\mathrm{t})]$
$\therefore \mathrm{T}[\mathrm{a} 1 \mathrm{x} 1(\mathrm{t})+\mathrm{a} 2 \mathrm{x} 2(\mathrm{t})]=\mathrm{a} 1 \mathrm{y} 1(\mathrm{t})+\mathrm{a} 2 \mathrm{y} 2(\mathrm{t})$
From the above expression, is clear that response of overall system is equal to response of individual system.

Example:

$y(t)=x 2(t)$ Solution:
$\mathrm{y} 1(\mathrm{t})=\mathrm{T}[\mathrm{x} 1(\mathrm{t})]=\mathrm{x} 12(\mathrm{t})$
$\mathrm{y} 2(\mathrm{t})=\mathrm{T}[\mathrm{x} 2(\mathrm{t})]=\mathrm{x} 22(\mathrm{t})$
$\mathrm{T}[\mathrm{a} 1 \mathrm{x} 1(\mathrm{t})+\mathrm{a} 2 \mathrm{x} 2(\mathrm{t})]=[\mathrm{a} 1 \mathrm{x} 1(\mathrm{t})+\mathrm{a} 2 \mathrm{x} 2(\mathrm{t})]^{2}$
Which is not equal to a1 $\mathrm{y} 1(\mathrm{t})+\mathrm{a} 2 \mathrm{y} 2(\mathrm{t})$. Hence the system is said to be non linear.

Time Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time. Otherwise, the system is considered as time invariant. The condition for time invariant system is: $y(n, t)=y(n-t)$

The condition for time variant system is: $\mathrm{y}(\mathrm{n}, \mathrm{t}) \neq \mathrm{y}(\mathrm{n}-\mathrm{t})$

Where $\mathrm{y}(\mathrm{n}, \mathrm{t})=\mathrm{T}[\mathrm{x}(\mathrm{n}-\mathrm{t})]=$ input
changey ($\mathrm{n}-\mathrm{t}$) = output change

Example:

$y(n)=x(-n)$
$\mathrm{y}(\mathrm{n}, \mathrm{t})=\mathrm{T}[\mathrm{x}(\mathrm{n}-\mathrm{t})]=\mathrm{x}(-\mathrm{n}-\mathrm{t})$
$\mathrm{y}(\mathrm{n}-\mathrm{t})=\mathrm{x}(-(\mathrm{n}-\mathrm{t}))=\mathrm{x}(-\mathrm{n}+\mathrm{t})$
$\therefore \mathrm{y}(\mathrm{n}, \mathrm{t}) \neq \mathrm{y}(\mathrm{n}-\mathrm{t})$. Hence, the system is time variant.

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems

If a system is both liner and time variant, then it is called liner time variant (LTV) system.
If a system is both liner and time Invariant then that system is called liner time invariant (LTI) system.

Static and Dynamic Systems

Static system is memory-less whereas dynamic system is a memory system.
Example 1: $y(t)=2 x(t)$
For present value $t=0$, the system output is $y(0)=2 x(0)$. Here, the output is only dependent upon present input.Hence the system is memory less or static.

Example 2: $y(t)=2 x(t)+3 x(t-3)$
For present value $t=0$, the system output is $y(0)=2 x(0)+3 x(-3)$.
Here $x(-3)$ is past value for the present input for which the system requires memory to get this output. Hence, thesystem is a dynamic system.

Causal and Non-Causal Systems

A system is said to be causal if its output depends upon present and past inputs, and does not depend upon futureinput.

For non causal system, the output depends upon future inputs also.
Example 1: $\mathrm{y}(\mathrm{n})=2 \mathrm{x}(\mathrm{t})+3 \mathrm{x}(\mathrm{t}-3)$
For present value $t=1$, the system output is $y(1)=2 x(1)+3 x(-2)$.
Here, the system output only depends upon present and past inputs. Hence, the system is causal.
Example 2: $\mathrm{y}(\mathrm{n})=2 \mathrm{x}(\mathrm{t})+3 \mathrm{x}(\mathrm{t}-3)+6 \mathrm{x}(\mathrm{t}+3)$
For present value $t=1$, the system output is $y(1)=2 x(1)+3 x(-2)+6 x(4)$ Here, the system output depends uponfuture input. Hence the system is non-causal system.

A system is said to invertible if the input of the system appears at the output.

$\mathrm{Y}(\mathrm{S})=\mathrm{X}(\mathrm{S}) \mathrm{H} 1(\mathrm{~S}) \mathrm{H} 2(\mathrm{~S})$
$=\mathrm{X}(\mathrm{S}) \mathrm{H} 1(\mathrm{~S}) \cdot 1(H 1(S))$
Since $H 2(S)=1 /(H 1(S))$
$\therefore \mathrm{Y}(\mathrm{S})=\mathrm{X}(\mathrm{S})$
$\rightarrow \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})$
Hence, the system is invertible.
If $\mathrm{y}(\mathrm{t}) \neq \mathrm{x}(\mathrm{t})$, then the system is said to be non-invertible.

Stable and Unstable Systems

The system is said to be stable only when the output is bounded for bounded input. For a bounded input, if theoutput is unbounded in the system then it is said to be unstable.

Note: For a bounded signal, amplitude is finite.
Example 1: $\mathrm{y}(\mathrm{t})=\mathrm{x} 2(\mathrm{t})$
Let the input is $u(t)$ (unit step bounded input) then the output $y(t)=u 2(t)=u(t)=$ bounded output.Hence, the system is stable.

Example 2: $\mathrm{y}(\mathrm{t})=\int x(\mathrm{t}) d t$
Let the input is $\mathrm{u}(\mathrm{t})$ (unit step bounded input) then the output $\mathrm{y}(\mathrm{t})=\int u(t) d t=$ ramp signal (unbounded becauseamplitude of ramp is not finite it goes to infinite when $t \rightarrow$ infinite).
Hence, the system is unstable.

1.1

Continuous-time and discrete-time Signals

1.1.1 Examples and Mathematical representation

Signals are represented mathematically as functions of one or more independent variables. Here we focus attention on signals involving a single independent variable. For convenience, this will generally refer to the independent variable as time.

There are two types of signals: continuous-time signals and discrete-time signals.
Continuous-time signal: the variable of time is continuous. A speech signal as a function of time is acontinuous-time signal.

Discrete -time signal: the variable of time is discrete. The weekly Dow Jones stock market index isan example of discrete-time signal.

1.1.2 Signal Energy and Power

If $v(t)$ and $i(t)$ are respectively the voltage and current across a resistor with resistance R, thenthe instantaneous power is

$$
\begin{equation*}
p(t)=v(t) i(t)=\frac{1}{R} v^{2}(t) \tag{1.1}
\end{equation*}
$$

The total energy expended over the time interval $t_{1} \leq t \leq t_{2}$ is

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} p(t) d t=\int_{t_{1}}^{t_{2}} \frac{1}{R} v^{2}(t) d t, \tag{1.2}
\end{equation*}
$$

and the average power over this time interval is
$\frac{1}{t_{2}-t_{1} t_{1}} \int_{t_{2}}^{t_{2}} p(t) d t=\frac{1}{t_{2}-t_{1}} \int_{t_{1} R}^{t_{2}} \frac{1}{2} v^{2}(t) d t$.
For any continuous-time signal $x(t)$ or any discrete-time signal $x[n]$, the total energy over thetime interval $t_{1} \leq t \leq t_{2}$ in a continuous-time signal $x(t)$ is defined as
$\int_{1}^{t_{2}}|x(t)|^{2} d t$,
where $|x|$ denotes the magnitude of the (possibly complex) number x. The time-averaged power is__ $\int_{\text {signal }}^{t} x(t) f^{t} d t$. Similarly the total energy in a discrete-time $x[n]$ over the time

$$
t_{2}-t_{1}
$$

interval $n_{1} \leq n \leq n_{2}$ is defined as

$$
\begin{equation*}
\sum_{n_{1}}^{n_{2}}|x[n]|^{2} \tag{1.5}
\end{equation*}
$$

The average power is $\frac{1}{\begin{array}{c}n-n \\ 2\end{array} \quad 1} \sum_{n_{1}}^{n_{2}}|X[n]|^{2}$
discrete time

$$
\begin{equation*}
E \sum_{=}^{+} \lim _{N \rightarrow \infty}{ }_{-N}^{N}|x[n]|^{2}=\sum_{-\infty}^{+\infty}|x[n]|^{2} \tag{1.7}
\end{equation*}
$$

For some signals, the integral in Eq. (1.6) or sum in Eq. (1.7) might not converge, that is, if $x(t)$ or $x[n]$ equals a nonzero constant value for all time. Such signals have infinite energy, while signals with $E_{\infty}<\infty$ have finite energy.

The time-averaged power over an infinite interval

$$
\begin{align*}
& P_{\infty}=\lim _{1} 1 \int_{T \rightarrow \infty}^{T} \left\lvert\, \begin{array}{c}
\left.x(t)\right|^{2} \\
d t
\end{array}\right. \tag{1.8}\\
& P=\left.\left.\lim _{\infty} \sum_{N \rightarrow \infty} \frac{1 \sum_{2 N+1}^{2 N}}{-N}\right|^{+N}[n]\right|^{2}
\end{align*}
$$

Three classes of signals:

- Class 1: signals with finite total energy, $E_{\infty}<\infty$ and zero average power, (Energy Signal)

$$
P=\lim _{\infty} E_{T \rightarrow \infty} \overline{E_{\infty}}=0
$$

- Class 2: with finite average power P_{∞}. If $P_{\infty}>0$, then $E_{\infty}=\infty$. An example is the signal $x[n]=4$, it has infinite energy, but has an average power of $P_{\infty}=16$. (Power Signal)

Class 3: signals for which neither P_{∞} and E_{∞} are finite. An example of this signal is $x(t)=t$.

1.2 Transformations of the independent variable

In many situations, it is important to consider signals related by a modification of the independentvariable. These modifications will usually lead to reflection, scaling, and shift.

1.2.1 Examples of Transformations of the Independent Variable

(b)

Fig.1.3 Discrete-time signals related by a time shift.

Fig. 1.4 Continuous-time signals related by a time shift.

Fig. 1.5 (a) A discrete-time signal $x[n]$; (b) its reflection, $x[-n]$ about $n=0$.

Fig. 1.6 (a) A continuous-time signal

Fig. 1.7 Continuous-time signals related by time scaling.

1.1.1 Periodic Signals

A periodic continuous-time
$x(t)$ has the property that there is a positive value of T for signalwhich

$$
\begin{equation*}
x(t)=x(t+T) \text { for all } t \tag{1.11}
\end{equation*}
$$

From Eq. (1.11), we can deduce that if $x(t)$ is periodic with period T, then $x(t)=x(t+m T)$ for all t and for all integers m. Thus, $x(t)$ is also periodic with period $2 T, 3 T, \ldots$. The fundamental period T_{0} of $x(t)$ is the smallest positive value of T for which Eq. (1.11) holds.

Fig. 1.8 Continuous-time periodic signal.

A discrete-time $\quad x[n]$ is periodic with period N, where N is an integer, if it is signalby a time shift unchanged of N,
$x[n]=x[n+N]$
for all values of n. If Eq. (1.12) holds, then $x[n]$ is also periodic with period $2 N, 3 N, \ldots$. Thefundamental period N_{0} is the smallest positive value of N for which Eq. (1.12) holds.

Fig. 1.9 Discrete-time periodic signal.

1.1.1 Even and Odd Signals

In addition to their use in representing physical phenomena such as the time shift in a radar signal andthe reversal of an audio tape, transformations of the independent variable are extremely useful in examining some of the important properties that signal may possess.

Signal with these properties can be even or odd signal, periodic signal:
An important fact is that any signal can be decomposed into a sum of two signals, one of which is even and one of which is odd.

(a)

(b)

Fig. 1.10 An even continuous-time signal; (b) an odd.
$E V\{x(t)\}=\frac{1}{2}[x(t)+x(-t)]$
which is referred to as the even partof

$$
O D\{x(t)\} \stackrel{1}{\equiv}[x(t)-x(-t)]
$$

$x(t)$. Similarly, the odd part of $x(t)$ is given by

$$
2
$$

Exactly analogous definitions hold in the discrete-time case.

(a)
(b)

(c)

Fig.1.11 The even-odd decomposition of a discrete-time signal.

1.2 Exponential and sinusoidal signals

1.2.1 Continuous-time complex exponential and sinusoidal signals

The continuous-time complex exponential signal
$x(t)=C e^{a t}$
where C and a are in general complex numbers.
$x(t)=C e^{a t}$
where C and a are in general complex numbers.
Real exponential signals

(b)

Fig. 1.12 The continuous-time complex exponential signal $x(t)=C e^{a t}$, (a) $a>0$; (b) $a<0$.

Periodic complex exponential and sinusoidal signals

If a is purely imaginary, we have
$x(t)=e^{j 00 t}$
An important property of this signal is that it is periodic. We know
T if
$x(t)$ is periodic with period
$e^{j \omega_{0} t}=e^{j \omega_{0}(t+T)}=e^{j \omega_{0} t} e^{j \omega_{0} T}$
For periodicity, we must have
$e^{j \omega_{0} T}=1$
For $\xi_{0} \neq 0$, the fundamental period T_{0}
$T_{0}=\frac{\text { is } 2 v}{\xi_{0}}$
Thus, the signals $e^{j 0_{0} t}$ and $e^{-j \omega_{0} t}$ have the same fundamental period.
A signal closely related to the periodic complex exponential is the sinusoidal signal
$x(t)=A \cos \left(\omega_{0} t+\phi\right)$
With seconds as the unit of t, the units of \exists and ξ_{0} are radians and radians per second. It is alsoknown $\xi_{0}=2 v f_{0}$, where f_{0} has the unit of circles per second or Hz .

The sinusoidal signal is also a periodic signal with a fundamental period of T_{0}.

Fig. 1.13 Continuous-time sinusoidal signal.
Using Euler"s relation, a complex exponential can be expressed in terms of sinusoidal signals with thesame fundamental period:
$e^{j \xi_{0} t}=\cos \xi_{0} t+j \sin \xi t$
Similarly, a sinusoidal signal can also be expressed in terms of periodic complex exponentials withthe same fundamental period:

$$
\begin{equation*}
A \cos (\xi t+\exists)=A_{j \exists}^{j \xi \xi_{0} t} A_{-j \exists}^{-j \xi_{0} t} \tag{1.22}
\end{equation*}
$$

$0 \quad \overline{2}^{e} e+{ }_{2}^{e} e$

A sinusoid can also be expresses as

$$
\begin{equation*}
A \cos (\xi t+\exists)=A \operatorname{Re}\left\{e^{j\left(\xi_{0} t+\exists\right)}\right\} \tag{1.23}
\end{equation*}
$$

and

$$
\begin{equation*}
A \sin \left(\xi_{\phi} t+\exists\right)=A \operatorname{Im}\left\{e^{j\left(\xi_{0} t+\exists\right)}\right\} \tag{1.24}
\end{equation*}
$$

Periodic signals, such as the sinusoidal signals provide important examples of signal with infinite totalenergy, but finite average power. For example:

$$
\begin{align*}
& E={ }_{\text {period }}^{T_{0}} \int_{0} \mid{ }^{j \xi_{0} t} d t={ }_{0}^{T_{0}} 1 d t=T \tag{1.25}
\end{align*}
$$

$P_{\text {period }}=\frac{1}{T_{0}} \int_{0}^{T_{0}} e^{j_{50} t} d t \quad \int_{0}^{T_{0}} 1 d t=1$

Since there are an infinite number of periods as t ranges from $-\infty$ to $+\infty$, the total energyintegrated over all time is infinite. The average power is finite since

$$
\begin{equation*}
P=\left.\lim _{\infty}{ }_{\substack{T \rightarrow \infty \\ 2 T-T}}\right|^{T} e^{j \xi t^{2}} d t=1 \tag{1.27}
\end{equation*}
$$

Harmonically related complex exponentials:

$\exists_{k}(t)=e^{j k \xi_{0} t}, \quad k=0, \pm 1, \pm 2, \ldots \ldots$.
ξ_{0} is the fundamental frequency.

Example:

Signal $x(t)=e^{j 2 t}+e^{j 3 t}$ can be expressed as $x(t)=e^{j 2.5 t}\left(e^{-j 0.5 t}+e^{j 0.5 t}\right)=2 e^{j 2.5 t} \cos (0.5 t)$, the magnitude of $x(t)$ is $|\quad| x(t)=2 \operatorname{cps}(0.5 t)$, which is commonly referred to as a fullwave rectifiedsinusoid, shown in Fig. 1.14.

$$
\left.\Delta\right|_{x} \mid
$$

Fig. 1.14 Full-wave rectified sinusoid.

General complex Exponential signals

It is expressed in polar and $a=r+j \xi_{0}$ is
Consider a complex exponential $C e^{a t}$, where $C=C \phi$ ${ }^{0} 0$ expressed in rectangular form. Then

$$
\begin{equation*}
C e^{a t}=\emptyset e e^{j} e^{\left(r+j \xi_{0}\right) t}=|C| e^{r t} e^{j\left(\xi_{0} t+0\right)}=\phi e^{r t} \cos \left(\xi_{0} t+0\right)+j C|e|^{r t} \sin \left(\xi_{0} t+0\right) . \tag{1.29}
\end{equation*}
$$

Thus, for $r=0$, the real and imaginary parts of a complex exponential are sinusoidal. For $r>0$, sinusoidal signals multiplied by a growing exponential.

(a)

(b)

Fig. 1.15 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal.

1.2.2 Discrete-time complex exponential and sinusoidal signals

A discrete complex exponential or sequence is defined by
$x[n]=C \alpha^{n}$,
where C and α are in general complex numbers. This can be alternatively expressed
$x[n]=C e^{\jmath_{n}}$,
where $\alpha=e^{J}$.

Real Exponential Signals

If C and α are real, we have the real exponential signals.

Fig. 1.16 Real Exponential Signal $x[n]=C \alpha^{n}$: (a) $\alpha>1$; (b) $0<\alpha<1$; (c) $-1<\alpha<0$; (d) $\alpha<-1$.

Sinusoidal

Signals

$$
\begin{align*}
& x[n]=e^{j \omega 0 n} \tag{1.33}\\
& e^{j \omega_{0} n}=\cos \omega \nsupseteq+j \sin \omega n_{0}
\end{align*}
$$

Similarly, a sinusoidal signal can also be expresses in terms of periodic complex exponentials with thesame fundamental period:

$$
\begin{equation*}
\underset{0}{A \cos (\omega n+\phi)}=\frac{A}{2} e^{j \phi} e^{j \omega_{0} n}+\frac{A^{2}}{2} e^{-j \phi} e^{-j \omega_{0} n} \tag{1.34}
\end{equation*}
$$

A sinusoid can also be expresses as

$$
\begin{equation*}
A \cos \left(\omega_{0} n+\phi\right)=A \operatorname{Re}\left\{e^{j\left(\omega_{0} n+\phi\right)}\right\} \tag{1.35}
\end{equation*}
$$

and

$$
\begin{equation*}
A \sin \left(\omega_{0} n+\phi\right)=A \operatorname{Im}\left\{e^{j\left(\omega_{0} n+\phi\right)}\right\} \tag{1.36}
\end{equation*}
$$

The above signals are examples of discrete signals with infinite total energy, but finite average power. For example: every sample of $x[n]=e^{j \omega 0^{n}}$ contributes 1 to the signal"s energy. Thus the total energy $-\infty<n<+\infty$ is infinite, while the average power is equal to 1 .

(a)

Fig.1.17 Discrete-time sinusoidal signal.

General Complex Exponential Signals

Consider a complex exponential $C \alpha^{n}$, where $C=|C|^{j 0}$ and $\alpha=|\alpha| e^{j \omega_{0}}$, then
$C \alpha^{n}=C q^{n}\left|\cos \left(\xi_{0}^{n+0}\right)+j q q q^{n}\right| \sin j\left(\xi \xi_{0}^{n+0)}\right.$.
Thus, for $\alpha \neq 1$, the real and imaginary parts of a complex exponential are sinusoidal.
For $|\alpha|<1$, sinusoidal signals multiplied by a decaying exponential.
For $|\alpha|>1$, sinusoidal signals multiplied by a growing exponential.

Fig. 1.18 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal.

1.2.3 Periodicity Properties of Discrete-Time Complex Exponentials

There are a number of important differences between continuous-time and discretetime sinusoidal signals. The continuous-time signals $e_{0}^{j o 0 t}$ are distinct for distinct values of $\quad \xi$. For discrete-time signals, however, these values are not distinct because the signal with ξ_{0} is identical tothe signals with frequencies ξ_{0} $\pm 2 v, \xi_{0 \pm} \pm v$, and so on,

$$
\begin{equation*}
e^{j\left(\xi_{0} \pm 2 v\right) n}=e^{j\left(\xi_{0} \pm 4 v\right) n}=e^{j \xi_{0} n} . \tag{1.38}
\end{equation*}
$$

In considering discrete-time exponentials, we need only consider a frequency interval of $2 v$. Inmost occasions, we will use the interval $0 \leq \xi_{0}<2 v$ or $-v \leq \xi_{0}<v$.

The discrete-time signal $x[n]=e^{j 00 n}$ does not have a continuously increasing rate of oscillation as ξ_{0} is increased in magnitude, but as ξ_{0} is increased from 0 , the signal oscillates more and more rapidly until ξ_{0} reaches v, and when ξ_{0} is continuously increased, the rate of oscillation
decreases until ξ_{0} reaches $2 v$. We conclude that the low-frequency discrete-time exponentials have values of ξ_{0} near $0,2 v$, and any other even multiple of v, while the highfrequencies are located near $\xi_{0}= \pm v$ and other odd multiples of v.

In order for the signal $x[n]=e^{j 00 n}$ to be periodic with period $N>0$, we must have
$e^{j \xi_{0}(n+N)}=e^{j \xi_{0} n}$,
or equivalently
$e^{j j_{0} N}=1$.
For Eq. (1.40) to hold, ξ must be a multiple of $2 v$. That is, there must be an integer m such ${ }_{0} \mathrm{~N}$ that
$\xi_{0} N=2 v m$,
or equivalently
$\frac{\xi_{0}}{2 v}=\frac{m}{N}$.
From Eq. $\quad x[n]=e^{j 0_{0} n}$ is a periodic if $\xi_{0} / 2 v$ is a rational number and is not periodic (1.40), otherwise.

The fundamental frequency of the discrete-time signal $x[n]=e^{j 00}$ is

$$
\begin{equation*}
\frac{2 v}{N}=\frac{\xi_{0}}{m} \tag{1.43}
\end{equation*}
$$

and the fundamental period of the signal can be

$$
\begin{equation*}
N=m_{\mid}^{(2 v) \mid} \mid \tag{1.44}
\end{equation*}
$$

The comparison of the continuous-time and discrete-time signals are summarized in the table below:

Table 1 Comparison of the signals $e^{j 5_{0} t}$ and $e^{j 5_{0} n}$.

$e^{j \xi_{0} t}$	$e^{\text {j5 on }}$
Distinct signals for distinct values of ξ_{0}	Identical signals for values of ξ_{0} separate dby multiples of $2 v$
Periodic for any choice of ξ_{0}	Periodic only if $\xi_{0}=2 \mathrm{vm} / N$ for some integers $N>0$ and m.
Fundamental	Fundamental frequency $\xi_{0 / \mathrm{m}}$
frequency ξ_{0} Fundamental period	Fundamental period $\xi_{0}=0$: undefined
$\xi_{0}=0$: undefined	O-iz
$\xi_{0} \neq 0: \frac{2 v}{\xi_{0}}$	$\xi_{0} \neq 0: m\left(\frac{2 v}{(\xi)}\right.$

Example : Suppose that we wish to determine the fundamental period of the discrete-time signal
$x[n]=e^{j(2 v / 3) n}+e^{j(3 v / 4) n}$

Solution:

The first exponential on the right hand side has a fundamental period of 3. The second exponential hasa fundamental period of 8 .

For the entire signal to repeat, each of the terms in Eq. (1.45) must go through an integer number ofits own fundamental period. The smallest increment of n the accomplished this is 24 . That is, over an interval of 24 points, the first term will have gone through 8 of its fundamental periods, and thesecond term through three of its fundamental periods, and the overall signal through exactly one of its fundamental periods.

Harmonically related periodic exponentials

$\exists_{k}[n]=e^{j k(2 v / N) n}, k=0, \pm 1, \ldots \ldots$.
In the continuous-time case, all of the harmonically related complex exponentials $e^{j k(2 v / N) t}$, $k=0, \pm 1, \quad$, are distinct. But this is not the case for discrete-time signals:
$\exists_{k+N}[n]=e^{j(k+N)(2 v / N) n}=e^{j(k 2 v / N) n} e^{j 2 v n}=\exists\{n](1.47)$ There are only N distinct period exponentials in the set given in Eq. (1.46).

1.3 The Unit Impulse and Unit Step Functions

The unit impulse and unit step functions in continuous and discrete time are considerably important insignal and system analysis.

1.3.1 The discrete-Time Unit Impulse and Unit Step Sequences

Discrete-time unit impulse is defined as

$$
6[n]= \begin{cases}0, & n \neq 0 \tag{1.48}\\ 11, & n=0\end{cases}
$$

6 [n]

Fig. 1.19 Discrete-time unit impulse.
Discrete-time unit step is defined as
$u[n]=\left\{\begin{array}{ll}0, & n<0 \\ 1, & n \geq 0\end{array}\right.$,

Fig. 1.20 Discrete-time unit step sequence.
The discrete-time impulse unit is the first difference of the discrete-time step
$6[n]=u[n]-u[n-1]$,
The discrete-time unit step is the running sum of the unit sample:
$u[n]=\sum_{m=-\infty}^{n} 6[m]$,
It can be seen that for $n<0$, the running sum is zero, and for $n \geq 0$, the running sum is 1 .

If we change the variable of summation from m to $k=n-m$ we have, $u[n]=\sum 6[n-k]$.
The unit impulse sequence can be used to sample the value of a signal at $n=0$. Since $6[n]$ is nonzero only for $n=0$, it follows that
$x[n] 6[n]=x[0] 6[n]$.
More generally, a unit impulse $6\left[n-n_{0}\right]$, then
$x[n] 6\left[n-n_{0}\right]=x\left[n_{0}\right] 6\left[n-n_{0}\right]$
This sampling property is very important in signal analysis.

1.3.2 The Continuous-Time Unit Step and Unit Impulse Functions

Continuous-time unit step is defined as
$u(t)=\left\{\begin{array}{ll}0, & t<0 \\ 1, & t \geq 0\end{array}\right.$,

Fig. 1.21 Continuous-time unit step function. The continuous-time unit stepis the running integral of the unit impulse
$\left.\left.u(t)=\int_{-\infty}^{t} 6(\}\right) d\right\}$.
The continuous-time unit impulse can also be considered as the first derivative of the continuous-time unit step,
$6(t)=\frac{d u(t)}{d t}$.
Since $u(t)$ is discontinuous at $t=0$ and consequently is formally not differentiable. This can be interpreted, however, by considering an approximation to the unit step $u_{\Delta}(t)$, as illustrated in thefigure below, which rises from the value of 0 to the value 1 in a short time interval of length Δ.

(b)

Fig. 1.22 (a) Continuous approximation to the unit step $u_{\Delta}(t)$; (b) Derivative of $u_{\Delta}(t)$.

The derivative is

$$
\begin{align*}
& 6(t)=\frac{d u_{\Delta}(t)}{d t}, \tag{1.57}\\
& 6_{\Delta}(t)=\left\{\begin{array}{ll}
1 & 0 \leq t<\Delta
\end{array},\right. \\
& \begin{array}{ll}
\Delta, & \text { otherwis }
\end{array} \tag{1.58}\\
& e
\end{align*},
$$

as shown in Fig. 1.22.
Note that $6_{\Delta}(t)$ is a short pulse, of duration Δ and with unit area for any value of Δ. As $\Delta \rightarrow 0$, $6_{\Delta}(t)$ becomes narrower and higher, maintaining its unit area. At the limit,
$6(t)=\lim _{\Delta \rightarrow 0} 6_{\Delta}(t)$,
$u(t)=\lim _{\Delta \rightarrow 0} u_{\Delta}(t)$,
$6(t)=\frac{d u(t)}{d t}$.
Graphically, $6(t)$ is represented by an arrow pointing to infinity at $t=0$, " 1 " next to the arrowrepresents the area of the impulse.

Fig. 1.23 Continuous-time unit impulse.

Sampling property of the continuous-time unit

 impulse:$$
\begin{equation*}
x(t) 6(t)=x(0) 6(t) \tag{1.62}
\end{equation*}
$$

Or more generally,

$$
\begin{equation*}
x(t) 6\left(t-t_{0}\right)=x\left(t_{0}\right) 6\left(t-t_{0}\right) \tag{1.63}
\end{equation*}
$$

Example:

Consider the discontinuous signal $x(t)$

Fig. 1.24 The discontinuous signal and its derivative.

Note that the derivative of a unit step with a discontinuity of size of k gives rise to an impulse of area k at the point of discontinuity.

1.4 Continuous-Time and Discrete-Time Systems

A system can be viewed as a process in which input signals are transformed by the system or causethe system to respond in some way, resulting in other signals as outputs.

Examples

(a)

Fig. 1. 25 Examples of systems. (a) A system with input voltage $v_{s}(t)$ and output voltage $v_{0}(t)$. A system with input equal to the force $f(t)$ and output equal to the velocity $v(t)$.

A continuous-time system is a system in which continuous-time input signals are applied and resultsin continuous-time output signals.

A discrete-time system is a system in which discrete-time input signals are applied and results indiscrete-time output signals.

1.5.2 Simple Examples of Systems

Example 1: Consider the RC circuit in Fig. 25 (a).
The current $i(t)$ is proportional to the voltage drop across the resistor:

$$
\begin{equation*}
i(t)=\frac{v_{s}(t)-v_{C}(t)}{R} \tag{1.64}
\end{equation*}
$$

The current through the capacitor is

$$
\begin{equation*}
i(t)=C \frac{d v_{C}(t)}{d t} \tag{1.65}
\end{equation*}
$$

Equating the right-hand sides of Eqs. 1.64 and 1.65, we obtain a differential equation describing therelationship between the input and output:

$$
\begin{equation*}
\frac{d v_{C}(t)}{d t}+\frac{1}{R C}{ }^{v} \quad v(t)={ }^{1} \underset{R C^{s}}{v}(t) \tag{1.66}
\end{equation*}
$$

Example 2: Consider the system in Fig. 25 (b), where the force $f(t)$ as the input and the velocity $v(t)$ as the output. If we let m denote the mass of the car and θv the resistance due to friction. Equating the acceleration with the net force divided by mass, we obtain

$$
\begin{equation*}
\frac{d v(t)}{d t}=\frac{1}{m}[f(t)-\theta v(t)] \Rightarrow \frac{d v(t)}{d t}+\frac{\theta}{m} v(t)=\frac{1}{m} f(t) \tag{1.67}
\end{equation*}
$$

Eqs.1.66 and 1.77 are two examples of first-order linear differential equations of the form:

$$
\begin{equation*}
\frac{d y(t)}{d t}+a y(t)=b x(t) \tag{1.66}
\end{equation*}
$$

Example 3: Consider a simple model for the balance in a bank account from month to month. Let $y[n]$ denote the balance at the end of nth month, and suppose that $y[n]$ evolves from monthto month according the equation:

$$
\begin{equation*}
y[n]=1.01 y[n-1]+x[n], \tag{1.67}
\end{equation*}
$$

or

$$
\begin{equation*}
y[n]-1.01 y[n-1]=x[n], \tag{1.68}
\end{equation*}
$$

where $x[n]$ is the net deposit (deposits minus withdraws) during the nth month $1.01 y[n-1]$ models the fact that we accrue 1% interest each

Example 4: Consider a simple digital simulation of the differential equation in Eq. (1.67), in which we resolve time into discrete intervals of length Δ and
$d v(t) / d(t)$ at $t=n \Delta$ approximateby the first backward difference, i.e.,
$\frac{v(n \Delta)-v((n-1) \Delta)}{\Delta}$

Let $v[n]=v(n \Delta)$ and $f[n]=f(n \Delta)$, we obtain the following discrete-time model relating thesampled signals $v[n]$ and $f[n]$,

$$
\begin{equation*}
v[n]-\frac{m}{(m+} v[n-1]=\frac{\Delta}{(m+} f[n] . \tag{1.69}
\end{equation*}
$$

Comparing Eqs. 1.68 and 1.69, we see that they are two examples of the first-order linear differenceequation, that is,
$y[n]+a y[n-1]=b x[n]$.

Some conclusions:

- Mathematical descriptions of systems have great deal in common;
- A particular class of systems is referred to as linear, time-invariant systems.
- Any model used in describing and analyzing a physical system represents an idealization of thesystem.

1.5.3 Interconnects of Systems

(a)

Fig. 1.26 Interconnection of systems. (a) A series or cascade interconnection of two systems; (b) Aparallel interconnection of two systems; (c) Combination of both series and parallel systems.

1.5 Basic System Properties

1.5.1 Systems with and without Memory

A system is memoryless if its output for each value of the independent variable as a given time isdependent only on the input at the same time. For example:
$y[n]=\left(2 x[n]-x^{2}[n]\right)^{2}$,
is memoryless.
A resistor is a memoryless system, since the input current and output voltage has the relationship:
$v(t)=R i(t)$,
where R is the resistance.

One particularly simple memoryless system is the identity system, whose output is identical to itsinput, that is
$y(t)=x(t)$,
or
$y[n]=x[n]$

An example of a discrete-time system with memory is an accumulator or summer.

$$
\begin{equation*}
y[n]=\sum_{k=-\infty}^{n} x[k]=\sum_{k=-\infty}^{n-1} x[k]+x[n]=y[n-1]+x[n] \text {, or } \tag{1.73}
\end{equation*}
$$

$$
\begin{equation*}
y[n]-y[n-1]=x[n] . \tag{1.74}
\end{equation*}
$$

Another example is a delay

$$
\begin{equation*}
y[n]=x[n-1] . \tag{1.75}
\end{equation*}
$$

A capacitor is an example of a continuous-time system with memory,

$$
\begin{equation*}
\left.v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\zeta) d\right\} \tag{1.76}
\end{equation*}
$$

where C is the capacitance.

1.5.2 Invertibility and Inverse System

A system is said to be invertible if distinct inputs leads to distinct outputs.

Fig. 1.29 Concept of an inverse system.
Examples of non-invertible systems:
$y[n]=0$,
the system produces zero output sequence for any input sequence.
$y(t)=x^{2}(t)$,
in which case, one cannot determine the sign of the input from the knowledge of the output.
Encoder in communication systems is an example of invertible system, that is, the input to the encoder must be exactly recoverable from the output.

1.5.3 Causality

A system is causal if the output at any time depends only on the values of the input at present timeand in the past. Such a system is often referred to as being nonanticipative, as the system output does not anticipate future values of the input.

The RC circuit in Fig. 25 (a) is causal, since the capacitor voltage responds only to the present and past values of the source voltage. The motion of a car is causal, since it does not anticipate future actions of the driver.

The following expressions describing systems that are not causal:
$y[n]=x[n]-x[n+1]$,
and
$y(t)=x(t+1)$.
All memoryless systems are causal, since the output responds only to the current value of input.
Example : Determine the Causality of the two systems:
(1) $y[n]=x[-n]$
(2) $y(t)=x(t) \cos (t+1)$

Solution: System (1) is not causal, since when $n<0$, e.g. $n=-4$, we see that $y[-4]=x[4]$, so that the output at this time depends on a future value of input.

System (2) is causal. The output at any time equals the input at the same time multiplied by a numberthat varies with time.

1.5.4 Stability

A stable system is one in which small inp uts leads to responses that do not diverge. More formally, ifthe input to a stable system is bounded, then the output must be also bounded and therefore cannot diverge.

Examples of stable systems and unstable systems:

The above two systems are stable system.
The $\quad y[n]=\sum^{n} x[k]$ is not stable, since the sum grows continuously $\quad x[n]$ is accumulator even if bounded.

Check the stability of the two systems:

- $\mathrm{S} 1 ; y(t)=t x(t)$;
- S2: $y(t)=e^{x(t)}$
- S1 is not stable, since a constant input $x(t)=1$, yields $y(t)=t$, which is not bounded nomatter what finite constant we pick, $\mid y(t)$ will exceed the constant for some t.
- S2 is stable. Assume the input is $\quad|x(t)|<B$, or $-B<x(t)<B \quad$ for all t. We then see boundedthat $y(t)$ is bounded $e^{-B}<y(t)<$ e^{B}.

1.5.5 Time Invariance

A system is time invariant if a time shift in the input signal results in an identical time shift in the output signal. Mathematically, if the system output isy (t) when the input is $x(t)$, a time-invariant system will have an outputof $y\left(t-t_{0}\right)$ when input is $x\left(t-t_{0}\right)$.

Examples:

- The system $y(t)=\sin [x(t)]$ is time invariant.
- The system $y[n]=n x[n]$ is not time invariant. This can be demonstrated by using counterexample. Consider the input signal $\quad x_{1}[n]=6[n]$, which yields $y_{1}[n]=0$. However,the input $x_{2}[n]=6[n-1]$ yields the output $y_{2}[n]=n 6[n-1]=6[n-1]$. Thus, while $x_{2}[n]$ isthe shifted version of $x_{1}[n], y_{2}[n]$ is not the shifted version of $y_{1}[n]$.
- The system $y(t)=x(2 t)$ is not time invariant. To check using counterexample. Consider $x_{1}(t)$ shown in Fig. 1.30 (a), the resulting output $y_{1}(t)$ is depicted in Fig. 1.30 (b). If the input is shifted by 2, that is, consider $x_{2}(t)=x_{1}(t-2)$, as shown in Fig. 1.30 (c), we obtainthe resulting output $\quad y_{2}(t)=x_{2}(2 t) \quad$ shown in Fig. $1.30(\mathrm{~d})$. It is clearly seen that $y_{2}(t) \neq y_{1}(t-2)$, so the system is not time invariant.

Fig. 1.30 Inputs and outputs of the system $y(t)=x(2 t)$.

1.5.6 Linea
 rity

The system is linear if

- The response to $x_{1}(t)+x_{2}(t)$ is $y_{1}(t)+y_{2}(t)$ - additivity property
- The response to $a x_{1}(t)$ is $a y_{1}(t)$ - scaling or homogeneity property.

The two properties defining a linear system can be combined into a single statement:

- Continuous time: $a x_{1}(t)+b x_{2}(t) \rightarrow a y_{1}(t)+b y_{2}(t)$,
- Discrete time: $a x_{1}[n]+b x_{2}[n] \rightarrow a y_{1}[n]+b y_{2}[n]$.

Here a and b are any complex constants.
Superposition property: If $x_{k}[n], k=1,2,3, \ldots$ are a set of inputs with corresponding outputs $y_{k}[n], k=1,2,3, \ldots$, then the response to a linear combination of these inputs given by
$x[n]=\sum_{k} a_{k} x_{k}[n]=a_{1} x_{1}[n]+a_{2} x_{2}[n]+a_{3} x_{3}[n]+\ldots$,

$$
\begin{equation*}
y[n]=\sum_{k} a_{k} y_{k}[n]=a_{1} y_{1}[n]+a_{2} y_{2}[n]+a_{3} y_{3}[n]+\ldots \tag{1.80}
\end{equation*}
$$

2 which holds for linear systems in both continuous and discrete time. For a linear system,

zero inputleads to zero output.

Examples:

- The system $y(t)=t x(t)$ is a linear system.
- The system $y(t)=x^{2}(t)$ is not a liner system.
- The system $y[n]=\operatorname{Re}\{x[n]\}$, is additive, but does not satisfy the homogeneity, so it is not alinear system.
- The system $y[n]=2 x[n]+3$ is not linear. $y[n]=3$ if $x[n]=0$, the system violates the "zero-in/zero-out" property. However, the system can be represented as the sum of the output of a linearsystem and another signal equal to the zero-input response of the system. For system $y[n]=2 x[n]$
+3 , the linear system is
$x[n] \rightarrow 2 x[n]$,
and the zero-input response is
$y_{0}[n]=3$
as shown in Fig. 1.31.

Fig. 1.31 Structure of an incrementally linear system.
$y_{0}(t)$ is the zero-input response of the system.

Energy and power signals :

- Consider a voltage $\mathrm{v}(\mathrm{t})$ across a resister R producing $\mathrm{i}(\mathrm{t})$.

The instantaneous power $\mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) . \mathrm{i}(\mathrm{t})$

$$
\begin{aligned}
& \quad=\mathrm{v}(\mathrm{t}) \cdot \frac{v(\mathrm{t}}{) R}=\frac{v^{2}(\mathrm{t})}{R} \\
& \mathrm{p}(\mathrm{t})=\mathrm{i}^{2}(\mathrm{t}) \mathrm{R}
\end{aligned}
$$

- For a resister of 1Ω the instantaneous power $p(t)=$ the square of the signal.
- On integration of the instantaneous power over a period $|\mathrm{t}| \leq \mathrm{T}$. We can express thetotal
energy and average power of a signal as
$\begin{array}{ll}\text { Total energy }=\mathrm{E}=L t & \int_{i} i^{2}(t) \quad \text { Joules for } \mathrm{R}=1 \Omega \\ d t\end{array}$

$$
T \rightarrow \infty
$$

Average power $=\mathrm{P}={ }^{L t}$ $d t$

$$
T \rightarrow \infty \quad 2 T_{-T}
$$

Thus for a signal $\mathrm{x}(\mathrm{t})$
The average power is defined as

And the total energy E = $d t$

$$
T \rightarrow \infty<{ }_{-T}
$$

For a discrete time signal the total energy is defined as

$$
\mathrm{E}=\sum_{n=-\alpha}^{\alpha}|x[n]|^{2}
$$

$$
\begin{aligned}
& \text { The average power is defined as } \\
& \qquad \mathrm{P}=\begin{array}{l}
L t \\
N \rightarrow \infty
\end{array} \frac{1}{2 N+1} \int_{n=-N}|x[n]|^{2}
\end{aligned}
$$

Definition :

(i) A signal $\mathrm{x}(\mathrm{t})$ is called energy signal if the energy E satisfies the condition $0<\mathrm{E}<\infty$ and $\mathrm{P}=0$.
(ii) A signal $\mathrm{x}(\mathrm{t})$ is called a power signal if the average power P satisfies the

$$
\text { condition } 0<\mathrm{P}<\infty \quad \text { and } \mathrm{E}=\infty
$$

Ex: Determine the power and RMS values of the signal :

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=\mathrm{A} \cos \left(\omega_{0} \mathrm{t}+{ }_{T} \theta\right) \\
& \mathrm{P}=\begin{array}{l}
L t \\
L t
\end{array} \quad \frac{1}{2 T} \int_{-7}^{T}|x[t]|^{2} d t
\end{aligned}
$$

θ

1.3. Standard Signals:

1.3.1. Sinusoidal signal:

1.3.2. Exponential Signals:
$x(t)=A e^{a t} \quad$ When both 'A' \& 'a' are real they are called real exponential

Complex exponential signal :

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t})=\mathrm{e}^{\text {st }} \quad \text { where } \mathrm{S} \text { is a complex variable. } \\
& \mathrm{S}=\sigma+\mathrm{J} \omega \\
& \text { So } \mathrm{x}(\mathrm{t})=\mathrm{e}^{\sigma t} \cdot \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \\
& \text { Using Euler's identity } \mathrm{x}(\mathrm{t})=\mathrm{e}^{\sigma \mathrm{t}}[\cos \omega \mathrm{t}+\mathrm{J} \sin \omega \mathrm{t}]
\end{aligned}
$$

Case (i) if both $\sigma \& \omega=0$. Then the signal is a pure d-c.

$$
S=0
$$

Case (ii) $\quad \omega=0$; $\quad S=\sigma$ then $x=e^{\sigma t}$.
This is a decaying exponential for $\sigma<0$ and growing exponential for $\sigma>0$.

Case (iii) If $\sigma=0$ then $S= \pm J \omega . \quad x(t)=e^{j \omega t}$
This becomes a sinusoidal signal where real part is cos ωt and imaginary is $\sin \omega t$.

Case (iv)

Case (v)

$$
\xrightarrow[e c t, \omega \neq 0]{a>0} \rightarrow
$$

(1) $x(t)=\cos \omega t$

Sinusoidal fr.
(2) $x(t)=A e^{-t}$

Exponential fin.

$x(t)=\sin \omega t$

1.3.3. Unit step signal:

$$
\begin{aligned}
u(t) & =1 \text { for } & t \geq 0 \\
& =0 \text { for } & t<0
\end{aligned}
$$

ut,

1.3.4. Unit ramp fn:

$$
r(t)=t \text { for } t \geq 0
$$

$$
=0 \text { for } t<0
$$

The unit ramp fn. can be obtained by applying a step fn. to an integration.
i.e. $\mathrm{r}(\mathrm{t})=\int \mathrm{u}(\mathrm{t}) \mathrm{dt}=\mathrm{t}$ in the interval $0 \leq \mathrm{t}$ or $\mathrm{t} \geq 0$ as a corollary $\quad \frac{d r(t)}{d t}$.
$\mathrm{u}(\mathrm{t})=$

1.3.5. Unit parabolic fn:

$p(t)=\frac{t^{2}}{2} \quad$ for $\quad t \geq 0$
$=0 \quad$ for $t<0$
$p(t)=\frac{t^{2}}{2} u(t)$

Unit parabolic fn. can be obtained by integrating ramps.
$\mathrm{p}(\mathrm{t})=\int \mathrm{r}(\mathrm{t}) \mathrm{dt}=\int \mathrm{t} d \mathrm{t}=\frac{t^{2}}{2}$ for $\mathrm{t} \geq 0$

$$
\text { or } \quad \mathrm{r}(\mathrm{t})=\frac{d}{\frac{p(t)}{d t}}
$$

1.3.6. Unit impulse fn :

$\int \delta(t) d t \quad$ and $\quad \delta(\mathrm{t})=0$ for $\mathrm{t} \neq 0$
=1
α

Properties of unit impulse fns. :

1. $\int x(t) \delta(t)=x(0)$
$d t$

Consider the product of $\mathrm{x}(\mathrm{t})$ \& $\delta(\mathrm{t})$. Let $\mathrm{x}(\mathrm{t})$ be continuous at $\mathrm{t}=$
0 .
The value of $x(t)$ at $t=0 \quad x(0)$.

But the impulse exists only at $\mathrm{t}=0$. Hence $\mathrm{x}(\mathrm{t}) \delta(\mathrm{t})=\mathrm{x}(0) \delta(\mathrm{t})$.
So the integral (1) can be written as $\int x(0) \delta=x(0) \int_{-\infty} \delta(t) d t$.
$(t) d t$
$=\mathrm{x}(0)$ since $\int \delta(t) \quad=1$ provided $\mathrm{x}(\mathrm{t})$ is continuous at $\mathrm{t}=$
0.
$d t$
2. $\mathrm{x}(\mathrm{t}) \delta\left(\mathrm{t}-\mathrm{t}_{0}\right)=\mathrm{x}\left(\mathrm{t}_{0}\right) \delta(\mathrm{t}-$
t_{0})

Let the signal $\mathrm{x}(\mathrm{t})$ be continuous at $\mathrm{t}=\mathrm{t}_{0}$. and the value of $\mathrm{x}(\mathrm{t})$ at $\mathrm{t}=\mathrm{t}_{0}$ is $\mathrm{x}\left(\mathrm{t}_{0}\right)$. $\delta\left(t-\mathrm{t}_{0}\right)$ is an impulse at $\mathrm{t}=\mathrm{t}_{0}$.

$$
\text { Hence } \mathrm{x}(\mathrm{t}) \delta\left(\mathrm{t}-\mathrm{t}_{0}\right)=\mathrm{x}\left(\mathrm{t}_{0}\right) \delta\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

3. $\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=\int_{-\infty}^{\infty} x\left(t_{0}\right) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right) \int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) d t$

$$
=x\left(t_{0}\right)
$$

$\operatorname{Put}\left(\mathrm{t}-\mathrm{t}_{0}\right)=\lambda \quad \mathrm{dt}=$
$\mathrm{d} \lambda$
So $\mathrm{x}\left(\mathrm{t}_{0}\right) \int_{-\infty} \delta(\lambda) d \lambda=x\left(t_{0}\right)$
i.e. $\quad \int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)$.
4. $\delta(\mathrm{at})=\frac{1}{(a)} \delta(\mathrm{t})$

Consider the integral.
$\int_{-\infty}^{\infty} x(t) \delta(a t) d t$

$$
\text { for } a>0
$$

$\underset{=}{\text { Let } a t=\lambda \quad \text { then } \mathrm{dt}=\mathrm{d} \lambda \text { or } \mathrm{dt} \frac{d \lambda}{a} \text {. }}$
$=\int_{-\infty}^{\infty} x \left\lvert\,\left(\bar{a}\left|\partial(\lambda) \frac{d \lambda}{\bar{a}}=\int_{a}^{1} \int_{-\infty}^{\infty} x\right|(\lambda)(\lambda)(\lambda) d \lambda={ }_{a}^{-x}(0)\right.\right.$

Let us consider :

$$
\begin{aligned}
& \text { a be }-2 \text { then we write } 2 \mathrm{t}=\lambda ; \mathrm{t} \frac{\lambda}{2} \text { and } \mathrm{dt}=\frac{d \lambda}{2} \\
& = \\
& \int_{2}^{\infty} x(t) \delta(-2 t) d t=\left.\int_{2}^{\infty} x\right|_{\frac{1}{2}} ^{(\lambda)} \mid \partial(-\lambda)-\quad \cdot \partial(\lambda)=\partial(-\lambda)
\end{aligned}
$$

$$
\text { (i) }=\frac{1}{2} x(0)=\frac{1}{\mid a} x(0) \text { for } \mathrm{a}<0
$$

$$
\begin{array}{lll}
\infty & 1 & 1 \\
& 1 &
\end{array}
$$

$$
\begin{gathered}
\int_{-\infty} x(t) \delta(a t) d t=\frac{-}{a} x(0)=\frac{-}{a} x(0) \text { for } a>0 \\
|a|
\end{gathered}
$$

Conside

$$
\text { r } \quad x(0)
$$

we know that $\mathrm{x}(0) \stackrel{\infty}{=} \int x(t) \delta(t) d t$

$$
\left.a^{1} \mathrm{x}(0)=\left|\begin{array}{c}
1 \\
\mid a
\end{array} \int_{=}^{\infty} x(t) \delta(t) d t \quad \int^{\infty} x(t)\right| \frac{1^{-\infty}}{|a|} \delta(t) \right\rvert\, d t
$$

Evaluate

$$
\begin{aligned}
& \Rightarrow \delta(\mathrm{at}) \quad \frac{1}{\mid a} \delta(t) \\
& =
\end{aligned}
$$

:
(i) $\int^{\infty} e^{-\alpha t^{2}} \delta(t-10) \quad$ (v) $\int_{-\infty}^{\infty}(t-3)^{2} \delta(t-3) d t$
$d t$
$\stackrel{-\infty}{\infty}$
(i) $\int_{-\infty} t^{2} \delta(t-3) d t$
$)_{\text {(vi }} \quad \int_{-\infty}[\delta(t) \cos t+\delta(t-1) \sin t] d t$
(ii) $\int_{d t}^{5} \delta(t) \sin 2 \Pi t$
(vii) $\int_{-\infty}^{\infty} \delta(t) e^{-J w t} d t$
0
(iii) $\int_{-\infty}^{\infty} \delta(t+3) e^{-t} d t$

$$
\text { (viii) }=\int_{0}^{\infty} x(t) \delta(t+3) d t
$$

1.3.7. Rectangular pulse :

$$
\begin{aligned}
\Pi(t) & =1 & & \text { for } \quad|t| \leq 1 / 2 \\
& =0 & & \text { else where }
\end{aligned}
$$

1.3.8. Triangular pulse :
$\Delta_{\mathrm{a}}(\mathrm{t})= \begin{cases}1-1-\frac{\mid t}{} & \text { for }(t) \leq a \\ 0 & \frac{\mid}{a} \\ & (t)>a\end{cases}$

1.3.9. Signum function. :

$$
\operatorname{Sgn}(\mathrm{t})=\left\{\begin{array}{l}
1 \text { for } t>0 \\
0 \text { for } t=0 \\
-1 \text { for } t<0
\end{array}\right.
$$

This also can be expressed

$$
\begin{aligned}
& \operatorname{asSgn}(\mathrm{t})=-1+2 \\
& \mathrm{u}(\mathrm{t})
\end{aligned}
$$

1.3.10. Sinc function :

$$
\text { Sinc } t=\frac{\sin c}{t t}-\infty<t<\infty
$$

1.3. Basic operations on signals:
(1) Time shifting
(2) Time reversal
(3) Time scaling
(4) Amplitude scaling
(5) Signal multiplier
(6) Signal
addition

1.3.1. Time Shifting :

Let the signal be $\mathrm{x}(\mathrm{t})$
Time shifting of $\mathrm{x}(\mathrm{t})$ may delay or advance the signal in time.
i.e. $y(t)=x(t-T)$ is T is $+v e$, it is a delay by T
unitsif T is -ve it is an advance by T -units.

1.3.2. Time reversal :

Original signal

Reversed and delayed by 2 units

1.3.3. Amplitude scaling : Amplitude scaled signal is obtained by scaling the amplitude of signal at each and every point.

Ex: $\quad y(t)=3 x(t)$

$$
x(t)=3 \sin t
$$

1.3.4. Time scaling: This can be accomplished by replacing t by "at" or " t / a ".

Where ais a +ve integer.
(1) Case 1 - ' t ' replaced by at

$$
\mathrm{Y}(\mathrm{t})=\mathrm{x}(\mathrm{t})
$$

$Y(t)=x(2 t)$
$Y(t)=x(t / 2)$

Original signal

Compressed

Expanded

1.3.5. Signal Addition

$$
\mathrm{x}_{3}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t})
$$

Sketch the following signals :

$\mathrm{x}(\mathrm{t})$

$$
\text { find } x(t-2) \quad x(-t)
$$

(1) $u(t)-u(t-2)$
(4) $r(t)-2 r(t-1)+r(t-2)$
(2) $\Pi\left(t t_{-1}-1 / 2\right)$
(5) $r(t) u[2-t]$
(3) Π $+\Pi[t-1]$
(6) $r[-0.5 t+2]$

$$
\overline{\mid \overline{L 2}}\rfloor
$$

Odd and even signals discrete times :

Even Signal $x[n]=x[-n]$

Even and odd composition original signal

$$
x[n]+x[-n]
$$

Even composition

$$
\mathrm{x}_{\mathrm{e}}[\mathrm{n}]=\frac{x[n]+x[-n]}{2}
$$

UNIT- I2

FOURIER SERIES

Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet"s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourierspectrum.
Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introductionto Hilbert Transforms.

3.0 Introduction

- Signals can be represented using complex exponentials - continuous-time and discrete-timeFourier series and transform.
- If the input to an LTI system is expressed as a linear comb ination of periodic complexexponentials or sinusoids, the output can also be expressed in this form.

3.1 The Response of LTI Systems to Complex Exponentials

It is advantageous in the study of LTI systems to represent signals as linear combinations of basicsignals that possess the following two properties:

- The set of basic signals can be used to construct a broad and useful class of signals.
- The response of an LTI system to each signal should be simple enough in structure to provide us with a convenient representation for the response of the system to any signal constructed as a linear combination of the basic signal.

Both of these properties are provided by Fourier analysis.
The importance of complex exponentials in the study of LTI system is that the response of an LTI system to a complex exponential input is the same complex exponential with only a change in amplitude; that is

Continuous time: $e^{s t} \rightarrow H(s) e^{s t}$,

Discrete-time: $z^{n} \rightarrow H(z) z^{n}$,
where the complex amplitude
$H(s)$ or $H(z)$ will be in general be a function of the factorcomplex variable s or z.

A signal for which the system output is a (possible complex) constant times the input is referred to as an eigenfunction of the system, and the amplitude factor is referred to as the system"s eigenvalue.Complex exponentials are eigenfunctions.

- The response of an LTI system to each signal should be simple enough in structure to provide us with a convenient representation for the response of the system to any signal constructed as a linear combination of the basic signal.

Both of these properties are provided by Fourier analysis.
The importance of complex exponentials in the study of LTI system is that the response of an LTI system to a complex exponential input is the same complex exponential with only a change in amplitude; that is

For an input $x(t)$ applied to an LTI system with impulse response of $h(t)$, the output is

$$
\begin{aligned}
y(t) & \left.\left.\left.=+_{-\infty}^{+\infty} h(\}\right) x(t-\} \quad t_{+\infty}\right){ }^{s(t-\})} d\right\} \\
& \left.\left.\left.=\int^{+\infty} h(\}\right\}^{s(t-\})} d\right\}=e^{s t} \int^{+\infty} h(\}{ }^{-s\}} d\right\}
\end{aligned}
$$

where we assume that the integral

$$
\left.\int^{+\infty} h(\zeta) e^{-s\rangle} d\right\} \quad \text { converges and is expressed as }
$$

$$
\begin{equation*}
\left.\left.H(s)=\int_{-\infty} h(\}\right) e^{-s\}} d\right\}, \tag{3.4}
\end{equation*}
$$

the response to $e^{s t}$ is of the form
$y(t)=H(s) e^{s t}$,

It is shown the complex exponentials are eigenfunctions of LTI
systems andspecific value of s is then the eigenvalues associated with the eigenfunctions.

Complex exponential sequences are eigenfunctions of discrete-time LTI systems. That is, suppose thatan LTI system with impulse response $h[n]$ has as its input sequence

$$
\begin{equation*}
x[n]=Z^{n}, \tag{3.6}
\end{equation*}
$$

where z is a complex number. Then the output of the system can be determined from the convolutionsum as
$y[n]=\sum^{\infty} h[k] x[n-k] \quad \sum_{n-k} h[k] z \quad=z^{n} \sum_{k=-\infty}^{\infty} h[k] z^{-k}$.
$=$
$k=-\infty$

Assuming that the summation on the right-hand side of Eq. (3.7) converges, the output is the samecomplex exponential multiplied by a consta nt that depends on the value of z. That is,
$y[n]=H(z) z^{n}$,
where $H(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k}$.
It is shown the complex exponentials are eigenfunctions of LTI systems and $H(z)$ for a specific value of z is then the eigenvalues associated with the eigenfunctions z^{n}.

The example here shows the usefulness of decomposing general signals in terms of eigenfunctions forLTI system analysis:

Let $x(t)=a_{1} e^{s 1^{t}}+a_{2} e^{s^{2} t}+a_{3} e^{s 3^{t}}$,
from the eigenfunction property, the response to each separately is
$a e^{s^{s t}} \rightarrow a \underset{111}{H}(s) e^{s 1^{t}}$
$a_{2} e^{s^{2} t} \rightarrow a_{2} H_{2}\left(s_{2}\right) e^{s_{2} t}$
$a_{3} e^{s^{t}} \rightarrow a_{3} H_{3}\left(s_{3}\right) e^{s^{t} t}$
and from the superposition property the response to the sum is the sum of the responses,
$y(t)=a_{1} H_{1}\left(s_{1}\right) e^{s_{1} t}+a_{2} H_{2}\left(s_{2}\right) e^{s_{2} t}+a_{3} H_{3}\left(s_{3}\right) e^{s^{3} t}$,
(3.11) Generally, if the input is
alinear combination of complexexponentials,
$x(t)=\sum_{k} a_{k} e^{s^{t} t}$,
the output will be
$y(t)=\sum_{k} a_{k} H(s) e_{k}^{s^{t}}$,
Similarly for discrete-time LTI systems, if the input is

$$
\begin{equation*}
x[n]=\sum_{k} a_{k} z_{k}^{n}, \tag{3.14}
\end{equation*}
$$

the output is

$$
\begin{equation*}
y[n]=\sum_{k} a_{k} H\left(z_{k}\right) z_{n}, \tag{3.15}
\end{equation*}
$$

3.2 Fourier Series representation of Continuous-Time Periodic Signals

3.31 Linear Combinations of harmonically Related Complex Exponentials

A periodic signal with period of T,
$x(t)=x(t+T)$ for all t,
We introduced two basic periodic signals in Chapter 1, the sinusoidal signal
$x(t)=\cos \xi_{0} t$,
and the periodic complex exponential
$x(t)=e^{j \xi 0^{t}}$,
Both these signals are periodic with fundamental frequency ξ_{0} and fundamental period $T=2 v / \xi_{0}$. Associated with the signal in Eq. (3.18) is the set of harmonically related complex exponentials

$$
\begin{equation*}
\exists_{k}(t)=e^{j k \xi_{0} t}=e^{j k(2 v / T) t}, \quad k=0, \pm 1, \pm 2, \ldots \ldots . \tag{3.19}
\end{equation*}
$$

Each of these signals is periodic with period of T (although $\mathrm{f} \phi r \mid k \geq 2$, the fundamental period of $\exists_{k}(t)$ is a fraction of T). Thus, a linear combination of harmonically related complexexponentials of the form

$$
\begin{equation*}
x(t) \quad \sum^{+\infty} a_{k} e^{j k \xi_{0} t}=\sum^{+\infty} a_{k} e^{j k(2 v / T) t} \tag{3.20}
\end{equation*}
$$

$$
k=-\infty \quad k=-\infty
$$

is also periodic with period of T.

- $k=0, x(t)$ is a constant.
- $k=+1$ and $k=-1$, both have fundamental frequency equal to ξ_{0} and are collectivelyreferred to as the fundamental components or the first harmonic components.
- $\quad k=+2$ and $k=-2$, the components are referred to as the second harmonic components.
- $k=+N \quad k=-N$, the components are referred to as the Nth harmonic components. and

Eq. (3.20) can also be expressed as

$$
\begin{align*}
& x(t)=x^{*}(t) \quad \sum^{+\infty} a_{k}^{*} e^{-j k_{0} t}, \tag{3.21}\\
& k=-\infty
\end{align*}
$$

where we assume that $x(t)$ is real, that is, $x(t)=x$
${ }^{*}(t)$.Replacing k by $-k$ in the summation, we have
$x(t) \quad \sum^{+\infty} a_{-k}^{*} e^{j k \xi_{0} t}$, =

$$
k=-\infty
$$

which , by comparison with Eq. (3.20), requires that $a_{k}=a^{*}{ }_{-k}$, or equivalently

$$
\begin{equation*}
a^{*}{ }_{k}=a_{-k} . \tag{3.23}
\end{equation*}
$$

To derive the alternative forms of the Fourier series, we rewrite the summation in Eq. (2.20) as

$$
\begin{equation*}
\left.0 \underset{k=1}{\sum a_{k} e} \quad+a_{-k} e \quad\right] \tag{3.24}
\end{equation*}
$$

Substituting $a^{*}{ }_{k}$ for a_{-k}, we have

$$
\begin{equation*}
\left.0 \underset{k=1}{\sum a_{k} e} \quad+a_{k}^{*} e \quad\right] . \tag{3.25}
\end{equation*}
$$

$\mathrm{f} a_{k}$ is expressed in polar from as
$\underset{k}{a=A} e_{k}^{j 0_{k}}$,
then Eq. (3.26) becomes

0

That is
$x(t)=a_{0}+2 \sum_{k=1}^{+\infty} A_{k} \cos \left(k \xi_{0} t+0_{k}\right)$.
It is one commonly encountered form for the Fourier series of real periodic signals in continuous time.

Another form is obtained bywriting a_{k} in rectangular form as
$a_{k}=B_{k}+j C_{k}$
then Eq. (3.26) becomes
$x(t)=a_{0}+2 \sum_{k=1}^{+\infty}\left[B_{k} \cos k \xi_{0} t-C_{k} \sin k \xi_{0} t\right]$.

For real periodic functions, the Fourier series in terms of complex exponential has the following three equivalent forms:

$x^{2}(t)=\sum_{k=-\infty}^{+\infty} a e_{k}^{j k \xi_{0} t}=\sum_{k=-\infty}^{+\infty} a e_{k}^{j k(2 v / T) t}$
$x(t)=a_{0}+2 \sum_{k}^{+\infty} A_{k} \cos \left(k \xi_{0} t+0_{k}\right.$
$)_{k=1}$
$x(t)=a_{0}+2 \sum_{k=1}^{+\infty}\left[B k \cos k \xi_{0} t-C_{k} \sin k \xi_{0} t\right]$

3.3.2 Determination of the Fourier Series Representation of a ContinuousTime Periodic Signal

Multiply both side of $x(t) \sum_{k=-\infty}^{+\infty} a_{k} e^{j k \xi_{0} t}$ by $e^{-j n \xi_{0} t}$, we obtain
$=$

$$
\begin{align*}
& x(t) e^{-j n \xi_{0} t} \sum_{t k=-\infty}^{+\infty} a_{k} e^{j \xi \xi_{5} \xi_{0}-e^{-j \xi_{5}}}, \tag{3.29}
\end{align*}
$$

Integrating both sides from 0 to $T=2 v / \xi_{0}$, we have
$\int_{0}^{T} x(t) e^{-j \eta^{\xi} \delta} d t=\sum_{k=-\infty}^{\infty} a_{k}\left[\int_{0}^{T} e^{j k \xi t} e^{-j n \xi t} d t\right]=\sum_{k=-\infty}^{\infty} a_{k}\left\{\left[\int_{0}^{T} e^{j(k-n) \xi t}{ }_{0} d t\right]\right.$,

Note that
$\int^{T} e^{j(k-n) \xi_{0} t} d t= \begin{cases}T, & k=n \\ & k \neq n\end{cases}$
0
(0,
So Eq. (3.30) becomes

$$
\begin{aligned}
& a={ }_{n}^{1} \frac{T}{T} \int_{0} x(t) e^{-j n \xi_{0} t} d t,
\end{aligned}
$$

The Fourier series of a periodic continuous-time signal

$$
\begin{align*}
& x(t) \sum_{k=-\infty}^{+\infty} a_{k} e^{j k \xi_{0} t}=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k} v / T \\
& a_{k}=\frac{1}{T} \int_{T} x\left(t^{-j k \xi_{0} t} d t \quad \frac{1}{T} \int_{T} x(t)^{-j k v / T} d\right.
\end{align*}
$$

Eq. (3.32) is referred to as the Synthesis equation, and Eq. (3.33) is referred to as analysis equation.
The set of coefficient $\left\{a_{k}\right\}$ are often called the Fourier series coefficients of thespectral coefficients of $x(t)$.

The coefficient a_{0} is the $\boldsymbol{d} \boldsymbol{c}$ or constant component and is given with $k=0$, that is

$$
\begin{equation*}
a_{0}^{a=} \bar{T}_{T}^{1} x(t) d t, \tag{3.34}
\end{equation*}
$$

Example: consider the signal $x(t)=\sin \xi_{0} t$.

$$
\sin \xi t=\underline{1}^{1} e^{j \xi_{0} t}-\underline{1} e^{-j \xi_{5} t} .2 j
$$

$$
0 \quad 2
$$

Comparing the right-hand sides of this equation and Eq. (3.32), we have
$a=1$,
$a=-1$
$12 j$
${ }^{-1} \quad 2 j$
$a_{k}=0$,

$$
k \neq+1 \text { or }-1
$$

Example : The periodic square wave, sketched in the figure below and define over one period is

$$
x(t)= \begin{cases}\{1, & \mid t<T_{1} \\ 0, & T_{1}<t \mid<T / 2^{\prime}\end{cases}
$$

The signal has a fundamental period T and fundamental frequency $\xi_{0}=2 \mathrm{v} / T$.

To determine the Fourier series coefficients for $x(t)$, we use Eq. (3.33). Because of the symmetry of $x(t)$ about $t=0$, we choose $-T / 2 \leq t \leq T / 2$ as the interval over which the
integration is performed, although any other interval of length T is valid the thus lead to the same result.

For $k=0$,

$$
\begin{aligned}
& a={ }_{0} \quad{ }_{1}^{T_{1}} x(t) d t=\int_{-}^{T_{1}} d t=\underline{2 T_{1}}, \\
& \int^{-T} \\
& \begin{array}{lll}
1 & T & T
\end{array}
\end{aligned}
$$

For $k \neq 0$, we obtain

$$
\begin{align*}
& a_{k}=\int_{T}^{1} \int_{-T}^{T_{1}} e^{-j k \xi_{0} t} d t=-\left.\sum_{j k \xi_{0} T} e^{-j k \xi_{0} t}\right|_{-T_{1}} ^{T_{1}} \\
& \quad=k \xi^{2} T e^{\left\lceil k \xi_{0} T_{1}\right.} 2 e^{\left.-j k \xi_{0} T_{1}\right\rceil} \mid
\end{align*}
$$

$$
=\frac{2 \sin \left(k \xi_{0} T_{1}\right)}{{ }_{j}}=\underline{\sin \left(k \xi_{0} T_{1}\right.}
$$

$$
k \xi_{0} T \quad k v
$$

The above figure is a bar graph of the Fourier series coefficients for a fixed T_{1} and several values of T.For this example, the coefficients are real, so they can be depicted with a single graph. For complex coefficients, two graphs corresponding to the real and imaginary parts or amplitude and phase of each coefficient, would be required.

3.4 Convergence of the Fourier Series

If a periodic signal $\quad x(t)$ is approximated by a linear combination of finite number ofharmonically related complex exponentials

$$
\begin{array}{ll}
x_{N}(t) & \sum a_{k} e^{j k \xi_{0} t} \tag{3.38}\\
= & N
\end{array} \quad \begin{gathered}
N \\
k=-N
\end{gathered}
$$

Let $e_{N}(t)$ denote the approximation error,

$$
\begin{equation*}
e_{N}(t)=x(t)-x_{N}(\mathrm{t})=x(t) \quad \sum a_{k} e^{j k \xi_{0} t} \tag{3.39}
\end{equation*}
$$

The criterion used to measure quantitatively the approximation error is the energy in the error over oneperiod:

$$
\begin{equation*}
E_{N}=\left.\int_{T} \phi_{N}(t)\right|^{2} d t \tag{3.40}
\end{equation*}
$$

It is shown (problem 3.66) that the particular choice for the coefficients that minimize the energy in theerror is

$$
a_{k}=\frac{1}{T, T} x(t) e^{-j j \xi_{0} t} d t
$$

It can be seen that Eq. (3.41) is identical to the expression used to determine the Fourier series coefficients. Thus, if $x(t)$ has a Fourier series representation, the best approximation using only
a finite number of harmonically related complex exponentials is obtained by truncating the Fourierseries to the desired number of terms.

The limit of E_{N} as $N \rightarrow \infty$ is zero.
One class of periodic signals that are representable through Fourier series is those signals which havefinite energy over a period,

$$
\begin{equation*}
{ }_{T}|x(t)|^{2} d t<\infty, \tag{3.42}
\end{equation*}
$$

When this condition is satisfied, we can guarantee that the coefficients obtained from Eq. (3.33) arefinite. We define

$$
\begin{align*}
& e(t)=x(t)-{ }^{\infty} \quad e^{j k \xi_{0} t}, \tag{3.43}\\
& \sum a_{k}
\end{align*}
$$

then

$$
\begin{equation*}
\int_{T}|e(t)|^{2} d t=0 \tag{3.44}
\end{equation*}
$$

The convergence guaranteed when $x(t)$ has finite energy over a period is very useful. In thiscase, we may say that $x(t)$ and its Fourier series representation are indistinguishable.

Alternative set of conditions developed by Dirichlet that guarantees the equivalence of the signal and itsFourier series representation:

Condition 1: Over any period, $x(t)$ must be absolutely integrable, that is

$$
\begin{equation*}
\int_{T}|x(t)| d t<\infty, \tag{3.45}
\end{equation*}
$$

This guarantees each coefficient a_{k} will be finite, since

$$
\begin{gather*}
\left|a_{k}\right|=\frac{1}{T T} x(t) e^{-j k_{50} t} d t=\frac{1}{\mid}|x(t)| d t<\infty . \tag{3.46}\\
\int_{T T}
\end{gather*}
$$

A periodic function that violates the first Dirichlet condition is

$$
x(t)=\stackrel{1}{-}, \quad 0<t<1
$$

Condition 2: In any finite interval oftime, $x(t)$ is of bounded variation; that is, there are no more than a finite number of maxima and minima during a single period of the signal. An example of a
function that meets Condition1 but not Condition 2:
$x(t)=\sin \binom{2 v}{t}, \quad 0<t \leq 1$,
Condition 3: In any finite interval of time, there are only a finite number of discontinuities.Furthermore, each of these discontinuities is finite.

An example that violates this condition is a function defined as
$x(t)=1,0 \leq t<4, x(t)=1 / 2,4 \leq t<6, x(t)=1 / 4,6 \leq t<7, x(t)=1 / 8,7 \leq t<7.5$, etc.
The above three examples are shown in the figure below.

The above are generally pathological in nature and consequently do not typically arise in practicalcontexts.

Summary:

- For a periodic signal that has no discontinuities, the Fourier series representation converges andequals to the original signal at all the values of t.
- For a periodic signal with a finite number of discontinuities in each period, the Fourier seriesrepresentation equals to the original signal at all the values of t except the isolated points of discontinuity.

Gibbs Phenomenon:

Near a point, where $x(t)$ has a jump discontinuity, the partial sums $x_{N}(t)$ of a Fourier series exhibit a substantial overshoot near these endpoints, and an increase in N will not diminish the amplitude of the overshoot, although with increasing N the overshoot occurs over smaller and smaller intervals. This phenomenon is called Gibbs phenomenon.

A large enough value of N should be chosen so as to guarantee that the total energy in these ripples isinsignificant.

3.5 Properties of the Continuous-Time Fourier Series

Notation: suppose $x(t)$ is a periodic signal with period T and fundamental frequency ξ_{0}. Then if the Fourier series coefficientsof
$x(t) \stackrel{E S}{\longleftrightarrow} a_{k}$,
to signify the pairing of a periodic signal with its Fourier series coefficients.

3.5.1 Linearity

Let $x(t)$ and $y(t)$ denote two periodic signals with period T and which have Fourier series coefficients denoted by a_{k} and b_{k}, that is
$x(t) \stackrel{\leftarrow S}{\longleftrightarrow} a_{k}$ and $y(t) \longleftrightarrow{ }^{E S} b_{k}$,
then we have

$$
\begin{align*}
& z(t)=A x(t)+B y(t) \longleftrightarrow_{c}^{E S}{ }_{k}=A a_{k}+B b_{k} ~ \tag{3.48}
\end{align*}
$$

3.5.2 Time Shifting

When a time shift to a periodic signal $x(t)$, the period T of the signal is preserved.

If $x(t) \stackrel{E S}{\longleftrightarrow} a_{k}$, then we have

$$
\begin{equation*}
x\left(t-t_{0}\right) \stackrel{E S}{\longleftrightarrow} e^{-j k \xi_{0} t} a_{k} . \tag{3.49}
\end{equation*}
$$

The magnitudes of its Fourier series coefficients remain unchanged.

If $x(t) \stackrel{E S}{\longleftrightarrow} a_{k}$, then

$$
\begin{equation*}
x(-t) \stackrel{E S}{\longleftrightarrow} a_{-k} . \tag{3.50}
\end{equation*}
$$

Time reversal applied to a continuous-time signal results in a time reversal of the correspondingsequence of Fourier series coefficients.

If $x(t)$ is even, that is $x(t)=x(-t)$, the Fourier series coefficients are also even, $a_{-k}=a_{k}$. Similarly, if $x(t)$ is odd, that is $x(-t)=-x(t)$, the Fourier series coefficients are also odd, $a_{-k}=-a_{k}$.

Time Scaling

If $x(t) \quad$ has the Fourier series representation $\quad x(t) \sum_{k=-\infty}^{+\infty} a_{k} e^{j k \xi_{0} t}$, then the Fourier series
$=$
representation of the time-scaled signal $x(\alpha t)$ is
$x(\alpha t) \quad \sum_{k=-\infty}^{+\infty} a_{k} e^{j k\left(\alpha \xi_{0}\right) t}$.

The Fourier series coefficients have not changes, the Fourier series representation has changed becauseof the change in the fundamental frequency.

3.5.4 Multiplication

Suppose $x(t)$ and $y(t)$ are two periodic signals with period T and that
$x(t) \stackrel{E S}{\longleftrightarrow} a_{k}$,
$y(t) \longleftrightarrow{ }^{E S} b_{k}$.
Since the product $x(t) y(t)$ is also periodic with period T, its Fourier series coefficients h_{k} is

$$
\begin{equation*}
x(t) y(t) \longleftrightarrow{ }_{k}^{E S} h=\underset{\substack{l=-\infty \\ l}}{\sum a b-1} . \tag{3.52}
\end{equation*}
$$

The sum on the right-hand side of Eq. (3.52) may be interpreted as the discrete-time convolutionof the sequence representing the Fourier coefficients of $x(t)$ and the sequence representing theFourier coefficients of $y(t)$.

3.5.5 Conjugate and Conjugate Symmetry

Taking the complex conjugate of a periodic signal $x(t)$ has the effect of complex conjugation and time reversal on the corresponding Fourier series coefficients. That is, if
$x(t) \stackrel{\leftrightarrow S}{\longleftrightarrow} q_{\text {, }}$, then
$x^{*}(t) \stackrel{E S}{\longleftrightarrow} a^{*}{ }_{-k}$.
If $x(t)$ is real, that is, $x(t)=x^{*}(t)$, the Fourier series coefficients will be conjugate symmetric, that is

$$
\begin{equation*}
a_{-k}=a^{*}{ }_{k} . \tag{3.54}
\end{equation*}
$$

From this expression, we may get various symmetry properties for the magnitude, phase, real parts andimaginary parts of the Fourier series coefficients of real signals. For example:

- From Eq. (3.54), we see that if $x(t)$ is real, a_{0} is real and $\left|a_{-k}\right|=a_{k} . \mid$
- If $x(t)$ is real and even, we have $a_{k}=a_{-k}$, from Eq. (3.54) $a_{-k}=a^{*}{ }_{k}$, so $a_{k}=a^{*}{ }_{k} \Rightarrow$ the Fourier series coefficients are real and even.
- If $x(t)$ is real and odd, the Fourier series coefficients are real andodd.

3.5.6 Parseval's Relation for Continuous-Time periodic Signals

Parseval"s Relation for Continuous-Time periodic Signals is

$$
\begin{aligned}
& \frac{1}{2} \int|x(t)| d t=\left.\sum_{k=-\infty}^{\infty} a_{k}\right|^{2}, \\
& T_{T}
\end{aligned}
$$

Since
$\underset{T}{-\int_{T}} a_{k} e^{j k \xi_{0} t^{2}} d t={ }_{T}^{1} \int_{T}\left|{ }_{k} a_{k}^{2} d t=q_{k}^{2}{ }_{k}\right|$
so $\quad \mid a_{k}{ }^{2}$ is the average power in the k th harmonic component.
that

Thus, Parseval"s Relation states that the total average power in a periodic signal equals the sum of theaverage powers in all of its harmonic components.
3.5.7 Summary of Properties of the Continuous-Time Fourier Series

Property	Periodic Signal	Fourier Series Coefficients
	$x(t)]$ Periodic with period T and $y(t)\}$ fundamental frequency $\xi=2 v$ $/ T$	$\begin{aligned} & a_{k} \\ & b_{k} \end{aligned}$
Linearity	$A x(t)+B y(t)$	$A a_{k}+B b_{k}$
Time Shifting	$x\left(t-t_{0}\right)$	$e^{-j k \xi_{0} t}{ }_{k} a$
Frequency shifting	$e^{j M \xi_{0} t} x(t)$	a_{k-M}
Conjugation	$x^{*}(t)$	$a^{*}{ }_{-k}$
Time Reversal	$x(-t)$	a_{-k}
Time Scaling	$x(\alpha t), \alpha>0$ (Periodic with period $T /$ α)	a_{k}
Periodic Convolution	$\left.\left.\left.\int_{T} x(\}\right) y(t-\}\right) d\right\}$	$T a_{k} b_{k}$
Multiplication	$x(t) y(t)$	$\sum_{l=-\infty}^{\infty} a_{l} b_{k-l}$
Differentiation	$\frac{d x(t)}{d t}$	$j k \xi_{0}^{a=j k}{ }_{k}^{\text {LV }} \frac{a}{T}{ }_{k}$
Integration	$\begin{aligned} & \int_{-\infty}^{t} x(t) d t \text { (finite valued and periodic } \\ & \text { only if } a_{0}=0 \text {) } \end{aligned}$	$\left(\frac{1}{J k \xi_{j}}\right) a_{k}=\binom{1}{j k(2 v / T)} a_{k}$
Conjugate Symmetry for Real Signals	$x(t) \text { real }$	$\left\{\begin{array}{c} a_{k}=a^{*}-k \\ \operatorname{Re}\{a\}=\operatorname{Re}\{a\} \\ \left\{\begin{array}{c} \operatorname{Im} \mid\left\{a_{k}^{k}\right\} \neq-\operatorname{Im}\left\{a_{-k}\right\} \\ a_{k}=a_{-k} \end{array}\right. \\ \angle a_{k}=-\angle a_{-k} \end{array}\right.$
Real and Even SignalsReal and Odd Signals Even-Odd Decomposition of Real Signals	$x(t)$ real and even $x(t)$ real and odd	```\(a_{k}\) real and even \(a_{k}\) purely imaginary and odd \(\operatorname{Re}\left\{a_{k}\right\}\) \(j \operatorname{Im}\left\{a_{k}\right\}\)```
	Parseval"s Relation for Periodic $\begin{aligned} & \int_{T}^{\text {Signals }_{1}} x(t) d t=\sum_{k=-\infty}^{2} a_{k} \end{aligned}$	

Example : Consider the signal $g(t)$ with a fundamental period of 4 .

$$
g(t)
$$

The Fourier series representation can be obtained directly using the analysis equation (3.33). We may also use the relation of $g(t)$ to the symmetric periodic square wave $x(t)$ discussed on page
8. Referring to that example, $T=4$ and $T_{1}=1$,
$g(t)=x(t-1)-1 / 2$.

The time-shift property indicates that if the Fourier series coefficients of $x(t)$ are denoted by a_{k} the Fourier series coefficientsof $x(t-1)$ can be expressed as
$b_{k}=a e_{k}^{-j k^{\nu} / 2}$.
The Fourier coefficients of the $d c$ offset in $g(t)$, that is the term $-1 / 2$ on the right-hand side of Eq. (3.56)are given by
$c_{k}=\left\{\begin{array}{cc}0, & \text { for } k \neq 0 \\ -\frac{1}{2} & \text { for } k=0 .\end{array}\right.$

Applying the linearity property, we conclude that the coefficients for $g(t)$ can be expressed as

$$
d_{k}= \begin{cases}\left\{a_{k} e^{-j k v / 2}\right. & \text { for } k \neq 0 \\ a_{0}-1, & \text { for } k=0\end{cases}
$$

replacing $a=\frac{\sin (v k / 2)}{k v} e^{j k v / 2}$, then we have
$d_{k}=\left\{\begin{array}{ll}\sin (v k / 2) e^{-j k v / 2}, & \text { for } k \neq 0 \\ v k & \text { for } k=0\end{array}\right.$.

Example: The triangular wave signal $x(t)$ with period $T=4$, and fundamental frequency $\xi_{0}=v / 2$ is shown in the figure below.

The derivative of this function is the signal $g(t)$ in the previous preceding example. Denoting the Fourier series coefficients $\quad g(t)$ by d_{k}, and those of $x(t)$ by e_{k}, based on the ofdifferentiation property, we have

$$
\begin{equation*}
d_{k}=j k(v / 2) e_{k} \tag{3.61}
\end{equation*}
$$

This equation can be expressed in terms of e_{k} except when $k=0$. From Eq. (3.60),

$$
\begin{gathered}
e_{k}=\frac{2 d_{k}}{j k}=\frac{2 \sin (v k / 2)}{j(k v)^{2}} e^{-j k v / 2} . \\
v
\end{gathered}
$$

For $k=0, e_{0}$ can be simply calculated by calculating the area of the signal under one period anddivide by the length of the period, that is

$$
\begin{equation*}
e_{0}=1 / 2 \tag{3.63}
\end{equation*}
$$

Example: The properties of the Fourier series representation of periodic train of impulse,

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} 6(t-k T) \tag{3.64}
\end{equation*}
$$

We use Eq. (3.33) and select the integration interval $-T / 2 \leq t \leq T / 2$, avoiding the to beplacement of impulses at the integration limits.

$$
\begin{gather*}
a={ }^{1} \int_{-T / 2}^{T / 2} 6(t) e^{-j k(2 v / T) t} d t={ }^{1} . \tag{3.65}\\
\bar{T}
\end{gather*}
$$

The periodic train of impulse has a straightforward relation to square-wave signals such as $g(t)$ on page 8. The derivative of $g(t)$ is the signal $q(t)$ shown in the figure below,

which can also interpreted as the difference of two shifted versions of the impulse $x(t)$. trainThat is,
$q(t)=x\left(t+T_{1}\right)-x\left(t-T_{1}\right)$.
Based on the time -shifting and linearity properties, we may express the Fourier coefficients b_{k} of $q(t)$ in terms of the Fourier series coefficient of a_{k}; that is
$b_{k}=e^{j k \xi T_{1}} a_{k} e^{-j k \xi T} a \pm{ }_{k}^{1}\left[\begin{array}{ll}e^{j k \xi T} & \left.{ }_{01}-e^{-j k \xi T}\right], \\ 01\end{array}\right]$,
Finally we use the differentiation property to get
$b_{k}=j k \xi_{0} c_{k}$,
where c_{k} is the Fourier series coefficients of $g(t)$. Thus

$$
\begin{equation*}
c_{k}^{=} \frac{b_{k}}{j k k \xi}=\frac{2 j \sin \left(k \xi_{0} T_{1}\right)}{T}=\frac{2 \sin \left(k \xi_{0} T_{1}\right)}{k \xi T}, k \neq 0, \tag{3.69}
\end{equation*}
$$

c_{0} can be solve by inspection from the figure:

$$
\begin{equation*}
c_{0}=\frac{2 T_{1}}{T} . \tag{3.70}
\end{equation*}
$$

Example: Suppose we are given the following facts about a signal $x(t)$

1. $x(t)$ is a realsignal.
2. $x(t)$ is periodic with period $T=4$, and it has Fourier series coefficients a_{k}.
3. $a_{k}=0$ for $k>1$.
4. The signal with Fourier coefficients $b_{k}=e^{-j v k /}{ }_{-k}$ is odd. ${ }^{2} a$
5. $-\left.\left.\frac{1}{4} \int_{4}\right|^{x}(t)\right|^{2} d t=\frac{1}{2}$

Show that the information is sufficient to determine the signal $x(t)$ to within a sign factor.

- According to Fact $3, x(t)$ has at most three nonzero Fourier series coefficients $a_{k}: a_{-1}, a_{0}$ and a_{1}. Since the fundamental frequency $\xi_{0}=2 v / T=2 v / 4=v / 2$, it follows that

$$
\begin{equation*}
x(t)=a_{0}+a_{1} e^{j v t / 2}+a e^{-j v t / 2} \tag{3.71}
\end{equation*}
$$

- Since $x(t)$ is real (Fact 1), based on the symmetry property a_{0} is real and $a_{1}=a^{*}{ }_{-1}$. Consequently,

$$
\begin{equation*}
x(t)=\underset{0}{a}+a e_{1}^{j v t / 2}+\left(\underset{1}{\left(a e^{j v t / 2}\right.}\right) * \underset{0}{a}+2 \operatorname{Re}\left\{a_{1} e^{j v t / 2}\right\} . \tag{3.72}
\end{equation*}
$$

- Based on the Fact 4 and considering the time-reversal property, we note that a_{-k} corresponds to $x(-t)$. Also the multiplication property indicates that multiplication of k th Fourier series by $e^{-j k \nu / 2}$ corresponds to the signal being shifted by 1 to the right. We conclude that the coefficients b_{k} correspond to the signal $x(-(t-1))=x(-t+1)$, which according to Fact 4 must be odd. Since $x(t)$ is real, $x(-t+1)$ must also be real. So based the property, theFourier series coefficients must be purely imaginary and odd. Thus, $b_{0}=0, b_{-1}=$ $-b_{1}$.
- Since time reversal and time shift cannot change the average power per period, Fact 5 holdseven if $x(t)$ is replaced by $x(-t+1)$. That is

$$
\begin{equation*}
\frac{1}{4} \int_{4}|x(-t+1)|^{2}=\frac{1}{2} \tag{3.73}
\end{equation*}
$$

Using Parseval"s relation,
$\left|b_{1}\right|^{2}+\left|b_{-1}\right|^{2}=1 / 2$.

Since $b_{-1}=-b_{1}$, we obtain $\left|b_{1}\right|=1 / 2$. Since b_{1} is known to be purely imaginary, it must be either $b_{1}=j / 2$ or $b_{1}=-j / 2$.

- Finally we translate the conditions on b_{0} and $b_{1} \quad$ into the equivalent statement on a_{0} and a_{1}. First, since $b_{0}=0$, Fact 4 implies that $a_{0}=0$. With $k=1$, this condition implies that $a=e^{-j v / 2} b=-j b=j b$. Thus, if we take $b=j / 2, a=-1 / 2$, from Eq. (3.72), $\begin{array}{lllllll}1 & -1 & -1 & 1 & 1 & 1\end{array}$ $x(t)=-\cos (v t / 2)$. Alternatively, if we take $b_{1}=-j / 2$, the $a_{1}=1 / 2$, and therefore, $x(t)=\cos (v t / 2)$.

3.6 Fourier Series Representation of Discrete-Time Periodic Signals

The Fourier series representation of a discrete-time periodic signal is finite, as opposed to the infinite series representation required for continuous-time periodic signals

3.6.1 Linear Combination of Harmonically Related Complex Exponentials

A discrete-time signal $x[n]$ is periodic with period N if
$x[n]=x[n+N]$.
The fundamental period is the smallest positive N for which Eq. (3.75) holds, and the fundamentalfrequency is $\xi_{0}=2 v / N$.

The set of all discrete-time complex exponential signals that are periodic with period N is given by
$\exists_{k}[n]=e^{j k \xi_{0} n}=e^{j k(2 v / N) n}, \quad k=0, \pm 1, \pm 2, \ldots$,
All of these signals have fundamental frequencies that are $2 v / N$ and thus are multiples ofharmonically related.

There are only N distinct signals in the set given by Eq. (3.76); this is because the discrete-timecomplex exponentials which differ in frequency by a multiple of $2 v$ are identical, that is,
$\exists_{k}[n]=\exists_{k+r N}[n]$.

The representation of periodic sequences in terms of linear combinations of the sequences $\exists_{k}[n]$ is

$$
\begin{equation*}
x[n]=\sum \underset{k}{a} \underset{k}{\exists}[n]=\sum \underset{k}{a} e^{j k \xi_{0} n}=\sum \underset{k k}{a} e_{k}^{j k(2 v / N) n} . \tag{3.78}
\end{equation*}
$$

Since the sequences $\exists_{k}[n]$ are distinct over a range of N successive values of k, the summation in Eq.(3.78) need include terms over this range. We indicate this by expressing the limits of the summation as $k=N$. That is,

$$
\begin{equation*}
x[n]=\sum_{k=\{N\rangle} a_{k} \exists_{k}[n]=\sum_{k=\langle N\rangle} a_{k} e^{j k \xi_{0} n}=\sum_{k=\{N\rangle} a_{k} e^{j k(2 v / N)} . \tag{3.79}
\end{equation*}
$$

Eq. (3.79) is referred to as the discrete-time Fourier series and the
as the Fourier coefficients a_{k} series coefficients.

6.2 Determination of the Fourier Series Representation of a Periodic Signal

The discrete-time Fourier series pair:

$$
\begin{gather*}
\sum_{k=\langle N\rangle}^{k k} \sum_{k=\langle N\rangle} k \sum_{k=\langle N\rangle} k \\
a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} x[n] e^{-j k \xi_{0} n}=-\quad \sum_{\langle,} x[n] e^{-j k(2 v / N) n}
\end{gather*}
$$

Eq. (3.80) is called synthesis equation and Eq. (3.81) is called analysis equation.
Example: Consider the signal $x[n]=\sin \xi_{0 n}$,
$x[n]$ is periodic only if $2 v / \xi_{0}$ is an integer, or aratio of integer. For the case thewhen $2 v / \xi_{0}$ is an integer N, that is, when

$$
\begin{equation*}
\xi_{0}=\frac{2 v}{N} \tag{3.83}
\end{equation*}
$$

$x[n]$ is periodic with the fundamental period N. Expanding the signal as a sum of two complexexponentials, we get

$$
\underset{-}{x[n]}=\frac{1}{2 j} e^{j(2 v / N) n} \frac{1}{3 j} e^{-j(2 v / N) n},
$$

From Eq. (3.84), we have
$a_{1}=\frac{1}{2 j}, a_{-1}=-\frac{1}{2 j}$,
and the remaining coefficients over the interval of summation are zero. As discussed previously, thesecoefficients repeat with period N.

The Fourier series coefficients for this example with $N=5$ are illustrated in the figure below.

When $2 v / \xi_{0}$ is a ratio of integer, that is, when
$\xi_{0}=\frac{2 v M}{N}$,
Assuming the M and N do not have any common factors, $x[n]$ has a fundamental period of N.Again expanding $x[n]$ as a sum of two complex exponentials, we have

$$
\begin{equation*}
\underset{-}{x[n]=} \frac{1^{j} e^{j M(2 v / N) n}}{2 j} \frac{1}{2 j} e^{-j M(2 v / N) n}, \tag{3.87}
\end{equation*}
$$

From which we determine by inspection that

$$
a_{M}=(1 / 2 j), a_{-M}=
$$ $-(1 / 2 j)$, and the remainingcoefficients over one period of length N are zero. The Fourier coefficients for this example with $M=3$ and $N=5$ are depicted in the figure below.

Example : Consider the signal

Expanding this signal in terms of complex exponential, we have
$)^{x[n]=1+\left({ }^{3}+1\right) e^{j(2 v / N) n}+\left(^{3}-1\right) e^{-j(2 v / N) n}+\left(1 e^{j v / 2} \quad \chi^{2(2 v / N) n}+\left(1 e^{-j v / 2} \quad-j 2(2 v / N) n\right.\right.}$.

Thus the Fourier series coefficients for this signal are

$$
\begin{aligned}
& a_{0}=1{ }_{3} \begin{array}{llll}
& & \\
\hline
\end{array} \\
& a_{1}=\frac{+}{2} \overline{=}{ }_{j}-j_{\frac{2}{2}} \\
& a \underset{-1}{ }={ }^{3}-\frac{1}{2}={ }^{3}+\frac{1}{2}{ }^{j}{ }^{2} \\
& a_{2}=\frac{1}{2} \text {, } \\
& a_{-2}=-\frac{1}{2} j \text {. }
\end{aligned}
$$

with $a_{k}=0$ for other values of k in the interval of summation in the synthesis equation. The real and imaginary parts of these coefficients $\quad N=10$, and the magnitude and phase of the forcoefficients are depicted in the figure below.

Re $\left\{a_{k}\right\}$

(a)

(b)

Example : Consider the square wave shown in the figure below.

Because $x[n]=1$ for $-N_{1} \leq n \leq N_{1}$, we choose the length- N interval of summation to include the $\quad-N_{1} \leq n \leq N_{1}$. The coefficients are given range

$$
a_{k}=\frac{1}{n} \sum_{n=-N_{1}}^{N_{1}} e^{-j k(2 v / N)}
$$

$a_{k}=\frac{1}{N} \sum_{n=0}^{2 N_{1}} e^{-j k(2 v / N)\left(m-N_{1}\right)}=\bar{N} e^{j k(2 v / N) N_{1}} \sum_{n=0}^{2 N_{1}} e^{-j k(2 v / N) m}$,
$\left.\left.a=1 \underset{\substack{j k(2 v / N) N_{1}}}{e} \mid 1-\underset{N}{j k 2 v\left(2 N_{1}+1\right) /}\right) \models \begin{array}{l}1 \\ \sin \left[2 v k\left(N_{1}\right]\right.\end{array}+1 / 2\right) / N, k \neq 0, \pm N, \pm 2 N$,

$$
\begin{aligned}
& k \\
& \text { and }
\end{aligned} \bar{N}^{e} \quad\left(\overline{1-e^{-j k(2 v / N)}}\right) \bar{N} \overline{\sin (v k / N)}
$$

$a=\frac{2 N_{1}+1}{N}, k=0, \pm N, \pm 2 N, \ldots$.

The coefficients a_{k} for $2 N_{1}+1=5$ are sketched for $N=10,20$, and 40 in the figure below.

The partial sums for the discrete-time square
$M=1,2,3$, and 4 are depicted in the wave forfigure below, where $N=9,2 N_{1}+1=5$.

We see for $M=4$, the partial sum exactly equals to $x[n]$. In contrast to the continuoustimecase, there are no convergence issues and there is no Gibbs phenomenon.

(c)

3.7 Properties of Discrete-Time Fourier Series

Property	Periodic Signal	Fourier Series Coefficients
		$\begin{aligned} & { }^{a_{k}} \text { Periodic with period N } \\ & b_{k} \end{aligned}$
Linearity	$A x[n]+B y[n]$	$A a_{k}+B b_{k}$
Time Shifting	$x\left[n-n_{0}\right]$	$e^{-j k(2 v / N) t} q_{k}$
Frequency shifting	$e^{j M(2 v / N) n} x[n]$	a_{k-M}
Conjugation	$x^{*}[n]$	$a^{*}{ }_{-k}$

Time Reversal	$x[-n]$	a_{-k}
Time Scaling	$x_{1}[n]=\left\{\begin{array}{l} \langle x[n / m], \text { if } n \text { is a multipleof } n \\ (0, \quad \text { if } n \text { is a multipleofn } \\ (\text { Periodic with period } m N) \end{array}\right.$	$\begin{aligned} & { }_{\mid}^{1} a^{(\text {viewed as periodic }) m} \\ & \text { with period } m N \end{aligned}$
Periodic Convolution	$\sum_{r=[N]} x[r] y[n-r]$	$N a_{k} b_{k}$
Multiplication	$x[n] y[n]$	$\sum a_{l} b_{k-l l=<N}>$
Differentiation	$x[n]-x[n-1]$	$\left(1-e^{-j k(2 v / N)}\right) a$
Integration	```\sumn}x[k](finite valued and periodic only if }\mp@subsup{a}{0}{}=0\mathrm{)```	$\left.\right\|_{\left(1-e^{-j k(2 v / N)}\right)^{k}} \mid a$
Conjugate Symmetry for Real Signals	$x[n] \text { real }$	
Real and Even Signals Real and Odd Signals Even-Odd Decompositio nof Real Signals	$\begin{gathered} x[n] \text { real and even } \\ x[n] \text { real and odd } \\ \left\{\begin{array}{c} x_{e}[n]=E v\{x[n]\}[x[n] \text { real }] \\ \left.x[n]=O d\{x[n]\}\left[\begin{array}{c} \\ e \\ e \end{array}\right][n] \text { real }\right] \end{array}\right. \end{gathered}$	a_{k} real and even a_{k} purely imaginary and $\begin{gathered} \text { oddRe }\left\{a_{k}\right\} \\ j \operatorname{Im}\left\{a_{k}\right\} \end{gathered}$
	Parseval"s Relation for Periodic Signals $\left.{ }^{1} \sum_{n=\langle N\rangle} x[n]^{2}=\sum_{n=\langle N\rangle} \mid a^{2}\right\}$	

3.7.1 Multiplication

$$
\begin{equation*}
x[n] y[n] \leftarrow{ }^{F S} \rightarrow \sum_{l=<N>} a_{l} b_{k-l} . \tag{3.92}
\end{equation*}
$$

Eq. (3.92) is analogous to the convolution, except that the summation variable is now restricted to in interval of N consecutive samples. This type of operation is referred to as a Periodic Convolution between the two periodic sequences of Fourier coefficients.

The usual form of the convolution sum, where the summation variable ranges $-\infty$ to $+\infty$, fromis sometimes referred to as Aperiodic Convolution.

3.7.2 First Difference

$$
\begin{equation*}
x[n]-x[n-1] \longleftrightarrow E S \quad\left(1-e^{-j k\left(2^{v} / N\right)}\right) a_{k} \tag{3.93}
\end{equation*}
$$

3.7.3 Parseval's Relation

$$
\begin{equation*}
\left.\frac{1}{T} \sum_{n=\langle N>}\right|_{X}[n]^{2}=\sum_{k=<N>}\left|a_{k}\right|^{2} \tag{3.94}
\end{equation*}
$$

3.7.4 Examples

Example : Consider the signal shown in the figure below.

The signal $x[n]$ may be viewed as the sum of the square wave $x_{1}[n]$ with Fourier seriescoefficients b_{k} and $x_{2}[n]$ with Fourier series coefficients c_{k}.

$$
\begin{equation*}
a_{k}=b_{k}+c_{k} \tag{3.95}
\end{equation*}
$$

The Fourier series coefficients for $x_{1}[n]$ is

The $\quad x_{2}[n]$ has only a dc value, which is captured by its zeroth Fourier series sequence coefficient:

$$
\begin{equation*}
c=\frac{1}{5}_{n=0}^{4} x_{2}[n]=1, \tag{3.97}
\end{equation*}
$$

Since the discrete-time Fourier series coefficients are periodic, it follows =1 whenever k that c_{k}
is an integer multiple of 5 .

$$
\overline{\bar{a})}=\left\{\begin{array}{l}
(1 \sin (3 v k / 5), \text { for } k \neq 0, \pm 5, \pm 10, \ldots . \\
k=\left\{\begin{array}{l}
-\ldots \sin (v k /
\end{array}\right. \tag{3.98}\\
\underline{8}, \quad \text { for } k=0, \pm 5, \pm 10, \ldots
\end{array}\right.
$$

Example : Suppose we are given the following facts about a sequence $x[n]$:

1. $x[n]$ is periodic with period $N=6$.
2. $\sum_{n=0}^{5} x[n]=2$.
3. $\sum_{n=2}^{7}(-1)^{n} x[n]=1$.
4. $x[n]$ has minimum power per period among the set of signals satisfying the preceding threeconditions.

$$
a=1^{5} \quad x[n]={ }_{-}^{1} .
$$

From Fact 2, we have 0

- $\quad \underset{k=0}{ }$ Note that $(-1)^{n}=e^{-j v n}=e^{-j\left(2 v^{n} \bar{\sigma}\right.} \beta=\sum a_{k}{ }^{2}$.

Since each nonzero coefficient contributes a positive amount to P, and since the values of a_{0} and a_{3} are specified, the value of P is minimized by choosing $a_{1}=a_{2}=a_{4}=a_{5}=0$. It follows that

$$
x[n]=\underset{0}{a+a} \underset{3}{e^{j v n}}=\frac{1}{\frac{ \pm}{3}}{ }_{6}^{1} \underset{6}{(-1)^{n}},
$$

which is shown in the figure below.

3.8 Fourier Series and LTI Systems

We have seen that the response of a continuous-time LTI system with impulse response $h(t)$ to acomplex exponential signal $e^{s t}$ is the same complex exponential multiplied by a complex gain:
$y(t)=H(s) e^{s t}$, where
$\left.\left.H(s)=\int_{-\infty}^{\infty} h(\}\right) e^{-s\rangle} d\right\}$,

In particular, for $s=j \xi$, the output is $\quad y(t)=H(j \xi) e^{j \xi t}$. The complex functions $H(s)$ and $H(j \xi)$ are called the system function (or transfer function) and the frequency response, respectively.

By superposition, the output of an LTI system to a periodic signal represented by a Fourier series
$x(t) \quad \sum^{k} a^{j k \xi 0 t}=\sum_{t}^{+\infty} a^{\zeta^{j k(2 v / T)}} \quad$ is given by

$$
\begin{aligned}
& \underset{=}{y(t)} \sum_{k=-\infty}^{+\infty} a_{k} H\left(j k \xi_{0}\right) e^{j k \xi_{0} t} .
\end{aligned}
$$

That is, the Fourier series coefficients b_{k} of the periodicoutput $y(t)$ are given by
$b_{k}=a_{k} H\left(j k \xi_{0}\right)$,

Similarly, for discrete-time signals and systems, response $h[n]$ to a complex exponential signal $e^{j \xi n}$ is the same complex exponential multiplied by a complex gain:

$$
\begin{equation*}
y[n]=H\left(j k \xi_{0}\right) e^{j k \xi_{0} n}, \tag{3.101}
\end{equation*}
$$

where

$$
\begin{equation*}
H\left(e^{j \xi}\right)=\sum_{n=-\infty}^{\infty} h[n] e^{-j \xi n} . \tag{3.102}
\end{equation*}
$$

$\underset{\text { Signal }}{\text { Example: Suppose that the periodic }}$

$$
\begin{gathered}
\underset{a}{x}(t)=\sum^{3} e^{j k 2 v t} \text { with } a=1, a=a=\frac{1}{-}, \\
k=-3^{k}
\end{gathered}
$$

$a_{2}=a_{-2}=\frac{1}{2}$, and $a_{3}=a_{-3}={ }_{3}^{\frac{1}{2}}$ is the input signal to an LTI system with impulse response

$$
h(t)=e^{-t} u(t)
$$

To calculate the Fourier series coefficients of $y(t)$, we first compute the frequency theoutputresponse:

$$
\begin{equation*}
\left.H(j \xi)=\int^{\infty} e^{-\}} e^{-j \xi \zeta} d\right\}=\left.\quad e^{-\zeta} e^{-\xi\}}\right|^{\infty}=1, \tag{3.103}
\end{equation*}
$$

1

$$
\begin{array}{llll}
0 & 1+j \xi & 1+j \xi
\end{array}
$$

The output is
$y(t)=\sum_{k=-3}^{+3} b_{k} e^{i k}$,
where $b_{k}=a_{k} H\left(j k \xi_{0}\right)=a_{k} H(j k 2 v)$,

$$
\begin{aligned}
& b_{2}=-1(1) \quad-\quad b_{-2}=1\left(\begin{array}{ll}
1
\end{array}\right)
\end{aligned}
$$

Example: Consider an LTI system with impulse
$h[n]=\alpha^{n} u[n],-1<\alpha<1$, and with responsethe input
$x[n]=\left(\begin{array}{l}2 v n) \\ \cos \left(\frac{N}{N}\right)\end{array}\right.$.
Write the signal $x[n]$ in Fourier series form as
$x[n]=\frac{1}{2} e^{j(2 v / N) n}+\frac{1}{2} e^{-j(2 v / N) n}$.
Also the transfer function is
$H\left(e^{j \xi)}=\sum_{j} \alpha^{n} e^{-j \xi n}=\sum_{\infty}\left(\alpha e_{-j \xi}\right)=1\right.$.
$n=0$
$n=0$

$$
\begin{equation*}
1-\alpha e^{-j \xi} \tag{3.106}
\end{equation*}
$$

The Fourier series for the output

$$
\begin{gather*}
y[n]={ }^{1} H\left(e^{j 2 v / N}\right) e^{j(2 v / N) n}+{ }^{1} H\left(e^{-j 2 v / N}\right) e^{-j(2 v / N} \\
2 \tag{3.107}
\end{gather*}
$$

$\underline{2}$

3.9 Filtering

Filtering - to change the relative amplitude of the frequency components in a signal or eliminate somefrequency components entirely.

Filtering can be conveniently accomplished through the use of LTI systems with an appropriatelychosen frequency response.
LTI systems that change the shape of the spectrum of the input signal are referred to as frequency-shaping filters.

LTI systems that are designed to pass some frequencies essentially undistorted and significantlyattenuate or eliminate others are referred to as frequency-selective filters.

Example : A first-order low-pass filter with impulse response $h(t)=e^{-t} u(t)$ cuts off the high frequencies in a periodic input signal, while low frequency harmonics are mostly left intact. Thefrequency response of this filter

$$
\begin{equation*}
\left.H(j \xi)=\int_{0}^{+\infty} e^{-\}} e^{-j \xi\}} d\right\}=\frac{1}{1+j \xi} \tag{3.107}
\end{equation*}
$$

We can see that as the frequency ξ increase, the magnitude of the frequency response of the filter $H(j \xi)$ decreases. If the periodic input signal is a rectangular wave, then the output signal
will have its Fourier series coefficients b_{k} given by
$b=a H(j k \xi)=\frac{\sin \left(k \xi_{0} T_{1}\right)}{}, \quad k \neq 0$
${ }^{k} \quad{ }^{k} \quad 0 \quad k \nu\left(1+j k \xi_{0}\right)$
$b_{0}=a_{0} H(0)=\frac{2 T_{1}}{T}$.

The reduced power at high frequencies produced an output signal that is smother than the input signal.

3.10 Examples of continuous-Time Filters Described By Differential Equations

In many applications, frequency-selective filtering is accomplished through the use of LTI systems described by linear constant-coefficient differential or difference equations. In fact, many physical systems that can be interpreted as performing filtering operations are characterized by differential or difference equation.

3.10.1 A simple RC Lowpass Filter

The first-order RC circuit is one of the electrical circuits used to perform continuous-time filtering. The circuit can perform either Lowpass or highpass filtering depending on what we take as the outputsignal.

(t)

If we take the voltage cross the capacitor as the output, then the output voltage is related to the inputthrough the linear constant-coefficient differential equation:

$$
\begin{equation*}
R C \frac{d v_{c}(t)}{d t}+v_{c}(t)=v_{s}(t) \tag{3.111}
\end{equation*}
$$

Assuming initial rest, the system described by Eq. (3.111) is LTI. If the input is $y(t)=e^{j \xi t}$, we must have voltage $\quad v_{c}(t)=H(j \xi) e^{j \xi t}$. Substituting these expressions into Eq. (3.111), we outputhave

$$
\begin{equation*}
R C \frac{d}{d t}\left[H(j \xi) e^{j \xi t}\right]+H(j \xi) e^{j \xi t}=e^{j \xi t} \tag{3.112}
\end{equation*}
$$

or

$$
\begin{equation*}
R C j \xi H(j \xi) e^{j \xi t}+H(j \xi) e^{j \xi t}=e^{j \xi t}, \tag{3.113}
\end{equation*}
$$

Then we have $H(j \xi)=\frac{1}{1+R C j \xi}$.

Te amplitude and frequency response $H(j \xi)$ is shown in the figure below.

We can also get the impulse response
$h(t)=\frac{1}{R C} e^{-t / R C} u(t)$,
and the step response is
$h(t)=\left(1-e^{-t / R C}\right) u(t)$,

The fundamental trade-off can be found

- To pass only very low frequencies, 1/ $R C$ should be small, or $R C$ shouldbe large.
- To have fast step response, we need a smaller $R C$.
- The type of trade-off between behaviors in the fr of theissues arising in the design analysis of LTI s!

3.10.2 A Simple RC Highpass Filter

If we choose the output from the resistor, then we get an RC highpass filter.

3.11 Examples of Discrete-Time Filter Described by Difference Equations

A discrete-time LTI system described by the first-order difference equation

$$
\begin{equation*}
y[n]-a y[n-1]=x[n] . \tag{3.116}
\end{equation*}
$$

Form the eigenfunction property of complex exponential signals, if
$x[n]=e^{j \xi n}$, then $y[n]=H\left(e^{j \xi}\right) e^{j \xi n}$, where $H\left(e^{j \xi}\right)$ is the frequency response of the system.

$$
\begin{equation*}
H\left(e^{j \xi}\right)=\frac{1}{1-a e^{-j \xi}} . \tag{3.117}
\end{equation*}
$$

The impulse response of the system is

$$
\begin{equation*}
x[n]=a^{n} u[n] . \tag{3.118}
\end{equation*}
$$

The step response is

$$
s[n]=\frac{\begin{array}{l}
1- \tag{3.119}\\
a^{n+1}
\end{array}}{1-a} u[n] .
$$

From the above plots we can see that for $\quad a=0.6$ the system acts as a Lowpass filter and $a=-0.6$, the system is a highpass filter. In fact, for any positive value of $a<1$, the system approximates a highpass filter, and for any negative value of $a>-1$, the system approximates
highpass filter, where a controls the size of bandpass, with broader pass a in bands as
decreased.

The trade-off between time domain and frequency domain characteristics, as discussed in continuoustime, also exists in the discrete-time systems.

3.11.2.2 Nonrecursive Discrete-Time Filters

The general form of an FIR norecursive difference equation is
$y[n]=\sum_{k=-N}^{M} b_{k} x[n-k]$.
It is a weighted average of $\quad(N+M+1)$ values of $x[n]$, with the weights given by the thecoefficients b_{k}.

One frequently used example is a moving-average filter, where the output of $y[n]$ is an average of values $\quad x[n]$ in the vicinity of n_{0} - the result corresponding a smooth operation or lowpass offiltering.

An example: $y[n]=-\frac{1}{-}(x[n-1]+x[n]+x[n+1])$.
)3
The impulse response is

$$
\begin{equation*}
h[n]=\frac{1}{3}(6[n-1]+6[n]+6[n+1]) \tag{3.122}
\end{equation*}
$$

and the frequency response

$$
\begin{equation*}
H\left(e^{j \xi}\right)=\frac{1}{3}\left(e^{j \xi}+1+e^{-j \xi}\right) . \tag{3.123}
\end{equation*}
$$

Magnitude of the frequency response of a three-point moving-average lowpass filter.

Magnitude of the frequency response of a three-point moving-average lowpass filter.

A generalized moving average filter can be expressed as

$$
\begin{equation*}
y[n]=\frac{1}{N+M+1} \sum_{k=-N}^{M} b_{k} x[n-k] . \tag{3.124}
\end{equation*}
$$

The frequency response

$$
\begin{align*}
& \text { is }{ }_{j \xi \mathrm{r} 1}{ }^{2}(e \quad)={ }^{M+N+1} \sum_{k=-N}^{M} e^{-j \xi k=} \frac{1}{M+N+1} e^{j \xi[(N-M) / 2] \sin [\xi(M+N+1) / 2]} \text { sin(}(2)
\end{align*}
$$

(a)

(b)

Magnitude of the frequency response for the lowpass movingaverage filter of eq. (3.162): (a) $M=N=16$; (b) $M=N=32$.

The frequency responses with different average window lengths are plotted in the figure below.

An example of FIR norecursive highpass filter is
$y[n]=\frac{x[n]-x[n-1]}{2}$.
The frequency response is

$$
\begin{equation*}
H\left(e^{j \xi}\right)=\frac{1}{2}\left(1-e^{-j \xi}\right)=j e^{j \xi / 2} \sin (\xi / 2) . \tag{3.127}
\end{equation*}
$$

Frequency response of a simple highpass filter.

Continuous-Time Fourier Transform

4.0 Introduction

- A periodic signal can be represented as linear combination of complex exponentials which are harmonically related.
- An aperiodic signal can be represented as linear combination of complex exponentials, which are infinitesimally close in frequency. So the representation take the form of an integral rather than a sum
- In the Fourier series representation, as the period increases the fundamental frequency decreases and the harmonically related components become closer in frequency. As the period becomes infinite, the frequency components form a continuum and the Fourier series becomes an integral.

4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier Transform

4.1.1 Development of the Fourier Transform Representation of an Aperiodic Signal

Starting from the Fourier series representation for the continuous-time periodic square wave:

$$
x(t)= \begin{cases}1, & |t|<T_{1} \tag{4.1}\\ 0, & T_{1}<t \mid<T / 2^{\prime}\end{cases}
$$

$$
x(t)
$$

$\begin{array}{lll}-2 & 1 & 2\end{array}$
The Fourier coefficients a_{k} for this square wave are

$$
\begin{equation*}
a_{k}=\frac{2 \sin \left(k \xi_{0} T_{1}\right)}{k \xi_{0} T} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
T a_{k}=\left.\frac{2 \sin \left(\xi T_{1}\right.}{)}\right|_{\substack{\xi=k \xi \\ 0}} \tag{4.3}
\end{equation*}
$$

where $2 \sin \left(\xi T_{1}\right) / \xi$ represent the envelope of $T a_{k}$

- When T increases or the fundamental frequency $\xi_{0}=2 v / T$ decreases, the envelope is sampled with a closer and closer spacing. As T becomes arbitrarily large, the original periodicsquare wave approaches a rectangular pulse.
- $T a_{k}$ becomes more and more closely spaced samples of the envelope, as $T \rightarrow \infty$, the Fourierseries coefficients approaches the envelope function.

This example illustrates the basic idea behind Fourier"s development of a representation for aperiodicsignals.

Based on this idea, we can derive the Fourier transform for aperiodic signals.
Suppose a $\quad x(t)$ with a finite duration, that is, $x(t)=0 \quad|t|>T_{1}$, as illustrated in the signalfigure for
below.

- As $T \rightarrow \infty, \tilde{x}(t)=x(t)$, for any infinite value of t.
- The Fourier series representation of $\widetilde{x}(t)$ is

$$
\begin{equation*}
\widetilde{x}(t) \quad \sum^{+\infty} a_{k} e^{j k^{50} t}, \tag{4.4}
\end{equation*}
$$

$=$

$$
\begin{equation*}
a=1_{k}=\int_{-T / 2}^{k=-\infty} T / 2 \pi(t) e^{-j k \xi_{0} t} d t \tag{4.5}
\end{equation*}
$$

- Since $\widetilde{x}(t)=x(t)$ for $\mid \notin<T / 2$, and also, since $x(t)=0$ outside this interval, so we have $a={ }^{1 T / 2} x(t) e^{-j k \xi_{0} t} d t={ }^{1 \infty} x(t) e^{-j k \xi_{0} t} d t$.
${ }_{k} \quad \int_{-T / 2} \quad \bar{T} \int_{-\infty}$
- Define the envelope $X(j \xi)$ of $T a_{k}$ as

$$
\begin{equation*}
X(j \xi)=\int_{-\infty}^{\infty} x(t) e^{-j \xi t} d t \tag{4.6}
\end{equation*}
$$

we have for the coefficients a_{k} $a_{k}=, \frac{1}{T}(j k \xi)_{0}$

The $\tilde{x}(t)$ can be expressed in terms of $X(j \xi)$, that is
n

$$
\begin{equation*}
\underline{\underline{\widehat{x}}}(t) \sum_{k=-\infty}^{+\infty}-\quad X\left(j k \xi_{0}\right) e^{j k \xi_{0} t}=1 \quad{ }^{+\infty} X\left(j k \xi_{0}\right) e^{j k \xi_{0} t} \xi . \tag{4.7}
\end{equation*}
$$

- As $T \rightarrow \infty, \tilde{x}(t)=x(t)$ and consequently, Eq. (4.7) becomes a representation of $x(t)$.
- In addition, $\xi_{0 \rightarrow 0}$ as $T \rightarrow \infty$, and the right-hand side of Eq. (4.7) becomes an integral.

We have the following Fourier transform:

$$
x(t) \quad \frac{1}{2} \int_{-\infty}^{\infty} X(j \xi) e^{j \xi t} d \xi \text { Inverse Fourier }
$$

an

$$
X(j \xi)=\int_{-\infty}^{\infty} x(t) e^{-} \quad \text { Fourier }
$$

4.1.2 Convergence of Fourier Transform

If the signal $x(t)$ has finite energy, that is, it is square integrable,
$\int_{-\infty}^{\infty}| |^{2} d t<\infty$,
$x(t)$

Then we guaranteed that $X(j \xi)$ is finite or Eq. (4.9) converges. If $e(t)=\widetilde{x}(t)-x(t)$, we have
$\int_{-\infty}^{\infty}| |^{2} d t=0$.
$e(t)$

An alterative set of conditions that are sufficient to ensure the convergence:
Contition1: Over any period, $x(t)$ must be absolutely integrable, that is
$\int_{-\infty}^{\infty}|x(t)| d t<\infty$,
Condition 2: In any finite interval oftime, $x(t)$ have a finite number of maxima and mi nima.

Condition 3: In any finite interval of time, there are only a finite number of discontinuities.Furthermore, each of these discontinuities is finite.

4.1.3 Examples of Continuous-Time Fourier Transform

Example : considersignal $x(t)=e^{-a t} u(t), a>0$.
From Eq. (4.9),

$$
X(j \xi)=\int_{0}^{\infty} e^{-a t} e^{-j \xi t} d t=-\left.\begin{gather*}
1 \tag{4.12}\\
a+j \xi
\end{gather*} e^{-(a+j \xi) t}\right|_{0} ^{\infty}=\begin{aligned}
& \Upsilon 1 \\
& a+j \xi
\end{aligned} \quad a>0
$$

If a is complex rather then real, we get the same result if $\operatorname{Re}\{a\}>0$
The Fourier transform can be plotted in terms of the magnitude and phase, as shown in the figurebelow.

$$
\begin{array}{ll}
X(j \xi)= & 1 \tag{4.13}\\
\left\lvert\,-\frac{1}{\sqrt[-a]{\varepsilon-2}}\right.
\end{array} \quad \angle X(j \xi)=-\tan ^{-1}(\xi)
$$

Example :Let $x(t)=e^{-d t}, \quad a>0$
$X(j \xi)=\int_{-\infty}^{\infty} e^{-a t} e^{-j \xi t} d t=\int_{-\infty}^{0} e^{a t} e^{-j \xi t} d t+\int_{0}^{\infty} e^{-a t} e^{-j \xi t} d t=\frac{1}{a-j \xi}+\frac{1}{a+j \xi}=\frac{2 a}{a^{2}+\xi^{2}}$
The signal and the Fourier transform are sketched in the figure below.

Example: $x(t)=6(t)$.

$$
\begin{equation*}
X(j \xi)=\int_{-\infty}^{\infty} 6(t) e^{-j \xi t} d t=1 . \tag{4.14}
\end{equation*}
$$

That is, the impulse has a Fourier transform consisting of equal contributions at all frequencies.
Example : Calculate the Fourier transform of the rectangular pulse signal
$x(t)=\left\{\begin{array}{ll}1, & |t|<T_{1} \\ 0, & |t|>T_{1}\end{array}\right.$.

$X(j \xi)=\int_{-\infty}^{\infty} x(t) e^{-j \xi t} d t=\int_{-T_{1}}^{T_{1}} 1 e^{-j \xi t} d t=2 \frac{\sin \xi T_{1}}{\xi}$.

The Inverse Fourier transform is

$$
\begin{equation*}
\hat{x}(t)=\int_{2 v}^{1} \int_{-\infty}^{\infty} \frac{\sin \xi T_{1}}{\xi} e^{j \xi t} d \xi \tag{4.18}
\end{equation*}
$$

Since the signal $x(t)$ is square integrable,

$$
\begin{equation*}
e(t)=\int_{-\infty}^{\infty}|x(t)-\quad|^{2} d t=0 \tag{4.19}
\end{equation*}
$$

$$
\hat{x}(t)
$$

$x^{\hat{x}}(t)$ converges to $x(t)$ everywhere except at the discontinuity, $t= \pm T_{1}$, where $\hat{x}(t)$ converges to $1 / 2$, which is the average value of $x(t)$ on both sides of the discontinuity.

In addition, the convergence of $x^{\wedge}(t)$ to $x(t)$ also exhibits Gibbs phenomenon. Specifically, theintegral over a finite-length interval of frequencies
${ }_{2 v}^{1} \int_{-W}^{W} 2 \frac{\sin \xi T_{1}}{\xi} e^{j \xi t} d \xi$

As $W \rightarrow \infty$, this signal converges to $x(t)$ everywhere, except at the discontinuities. More over, the signal exhibits ripples near the discontinuities. The peak values of these ripples do not decrease as W increases, although the ripples do become compressed toward the discontinuity, and the energy in the ripples converges to zero.

Example : Consider the signal whose Fourier transform is

$$
X(j \xi)=\left\{\begin{array}{ll}
1, & \mid \xi<W \\
0, & \mid \xi>W
\end{array} .\right.
$$

The Inverse Fourier transform is
$x(t)=\frac{1}{2 v} \int_{-W}^{W} e^{j \xi t} d \xi=\frac{\sin W t}{v t}$.
Comparing the results in the preceding example and this example, we have

This means a square wave in the time domain, its Fourier transform is a sinc function. However, if the signal in the time domain is a sinc function, then its Fourier transform is a square wave. This property is referred to as Duality Property.

We also note that when the width of $X(j \xi)$ increases, its inverse Fourier transform $x(t)$ will becompressed. When $W \rightarrow \infty, X(j \xi)$ converges to an impulse. The transform pair with several different values of W is shown in the figure below.

4.2 The Fourier Transform for Periodic Signals

The Fourier series representation of the signal $x(t)$ is
$\stackrel{x(t)}{=} \quad \sum_{k=-\infty}^{\infty} a_{k} e^{j k \xi_{0} t}$.

It"s Fourier transform is

$$
\begin{equation*}
X(j \xi)=\sum_{k=-\infty}^{\infty} 2 v a_{k} 6\left(\xi-k \xi_{0}\right) \tag{4.21}
\end{equation*}
$$

Example : If the Fourier series coefficients for the square wave below are given

The Fourier transform of this signal is

$$
\begin{equation*}
X(j \xi)={\underset{k=-\infty}{\infty} \frac{2 \sin k \xi_{0} T_{1}}{k} 6\left(\xi-k \xi_{0}\right)}^{k} \tag{4.23}
\end{equation*}
$$

Figure 4.12 Fourier transform of a symmetric periodic square wave.

Example: The Fourier transforms $x(t)=\sin \xi_{0} t$ and $x(t)=\cos \xi_{0} t$ are shown in the figure forbelow.

Fourier transforms of (a) $x(t)=\sin \omega_{0} t$; (b) $x(t)=\cos \omega_{0} t$.

Example: Calculate the Fourier transform for signal $x(t)=\sum_{k=-\infty}^{\infty} 6(t-k T)$.
The Fourier series of this signal is

$$
a=\begin{gathered}
1+T / 2 \\
k \quad \int_{-T / 2} 6(t) e^{-j j_{0} t}=1
\end{gathered}
$$

The Fourier transform is

$$
X(j \xi)=\frac{2 v}{T_{k=-\infty}} \sum_{0}^{\infty} 6\left(\xi-\frac{2 \nu k}{T}\right)
$$

The Fourier transform of a periodic impulse train in the time domain with period T is a periodicimpulse train in the frequency domain with period $2 v / T$, as sketched din the figure below.

Figure 4.14 (a) Periodic impulse train; (b) its Fourier transform.

4.3 Properties of The Continuous-Time Fourier Transform

4.3.1 Linearity

If $x(t) \longleftrightarrow X(j \xi)$ and $y(t) \longleftrightarrow \stackrel{F}{\longleftrightarrow} Y(j \xi)$
Then

$$
\begin{equation*}
a x(t)+b y(t) \stackrel{F}{\longleftrightarrow} a X(j \xi)+b Y(j \xi) . \tag{4.20}
\end{equation*}
$$

4.3.2 Time Shifting

If $x(t) \stackrel{F}{\longleftrightarrow} X(j \xi)$
Then
$x\left(t-{ }_{0}\right) \stackrel{F}{\longleftrightarrow} e^{-j \xi t_{0}} X(j \xi)$.
Or
$F\left\{x\left(t-t_{0}\right)\right\}=e^{-j \xi t_{0}} X(j \xi)=\left.X(j \xi) e\right|^{j\left[\angle X(j \xi)-\xi t_{0}\right]}$.
Thus, the effect of a time shift on a signal is to introduce into its transform a phase shift, namely, $-\xi_{0} t$.

Example: To evaluate the Fourier transform of the signal $x(t)$ shown in the figure below.

The signal $x(t)$ can be expressed as the linear combination
$x(t)={\underset{2}{2}}_{1} x(t-2.5)+x_{2}(t-2.5)$.
$x_{1}(t)$ and $x_{2}(t)$ are rectangular pulse signals and their Fourier transforms are

$$
\underset{1}{\underset{2}{X}(j \xi)}=\frac{2 \sin (\xi /}{\xi} \text { and } X(j \xi)=\frac{2 \sin (3 \xi / 2)}{\xi}
$$

Using the linearity and time -shifting properties of the Fourier transform yields

4.3.3 Conjugation and Conjugate Symmetry

If $x(t) \stackrel{ }{\rightleftarrows} X(j \xi)$
Then
$x^{*}(t) \stackrel{F}{\longleftrightarrow} X^{*}(-j \xi)$.

Sinc $X^{*}(j \xi)=\left\lceil\int{ }^{+\infty} x(t) e^{-j \xi t} d t 7^{*} \quad \int^{+\infty} x^{*}(t) e^{j \xi t} d t\right.$, e

Replacing ξ by $-\xi$, we see that

$$
\begin{equation*}
X^{*}(-j \xi)=\int_{-\infty}^{+\infty} x^{*}(t) e^{-j \xi t} d t \tag{4.20}
\end{equation*}
$$

The right-hand side is the Fourier transform of x^{*}
(t).If $x(t)$ is real, from Eq. (4.20) we can get

$$
\begin{equation*}
X(-j \xi)=X^{*}(j \xi) \tag{4.20}
\end{equation*}
$$

We can also prove that if $x(t)$ is both real and even, then $X(j \xi)$ will also be real and even.Similarly, if $x(t)$ is both real and odd, then $X(j \xi)$ will also be purely imaginary and odd.
A real function $x(t) \quad$ can be expressed in terms of
the sum of an even function
$x_{e}(t)=E v\{x(t)\}$ and an odd $\quad x_{o}(t)=\operatorname{Od}\{x(t)\}$. That is function
$x(t)=x_{e}(t)+x_{o}(t)$

Form the Linearity property,
$F\{x(t)\}=F\left\{x_{e}(t)\right\}+F\left\{x_{o}(t)\right\}$,
From the preceding discussion, $F\left\{x_{e}(t)\right\}$ is real function and $F\left\{x_{o}(t)\right\}$ is purely imaginary. Thuswe conclude with $x(t)$ real,
$x(t) \stackrel{F}{\longleftrightarrow} X(j \xi)$
$E v\{x(t)\} \stackrel{F}{\longleftrightarrow} \operatorname{Re}\{X(j \xi)\}$
$\operatorname{Od}\{x(t)\} \stackrel{F}{\longleftrightarrow} j \operatorname{Im}\{X(j \xi)\}$
Example: Using the symmetry properties of the Fourier transform and the result $e^{-a t} u(t) \longleftrightarrow \stackrel{1}{a+j \xi}$ to evaluate the Fourier transform of the signal $x(t)=e^{-a t}$, where $a>0$.

Since $\quad{ }_{x(t)}=\stackrel{-a t}{ } e^{\text {\# }} \quad e^{-a t} u(t)+e^{a t} u(t)=\frac{\left\lceil e^{-a t} u(t)+e^{a t} u(-t)\right\rceil}{2}=2 E v e^{-a t} u(t)$,
So $X(j \xi)=2 \operatorname{Re}(1) \quad 2 a$

$$
\left(\left.\underline{a+j \xi}\right|_{)}=\underline{a^{2}+\xi^{2}}\right.
$$

4.3.4 Differentiation and Integration

If $x(t) \stackrel{F}{\longleftrightarrow} X(j \xi)$
Then

$$
\begin{align*}
& \frac{d x(t)}{d t} \longleftrightarrow j \xi X(j \xi) \\
& \left.\left.\int_{-\infty}^{t} x(\}\right) d\right\} \stackrel{1}{\longleftrightarrow} X(j \xi)+v X(0) 6(\xi)
\end{align*}
$$

Example : Consider the Fourier transform of the unit step $x(t)=$
$u(t)$.It is know that
$g(t)=6(t) \stackrel{F}{\longleftarrow}$
$\rightarrow 1$ Also note
that

$$
\left.\left.x(t)=\int_{-\infty}^{t} g(\}\right) d\right\}
$$

The Fourier transform of this function is

$$
X(j \xi)=\frac{1}{j \xi}+v G(0) 6(\xi)=\frac{1}{j \xi}+v 6(\xi)
$$

where $G(0)=1$.

Example: Consider the Fourier transform of the function $x(t)$ shown in the figure below.

$g(t)=\frac{d x(t)}{d t}$
From the above figure we can see $\quad g(t)$ is the sum of a rectangular pulse and two impulses. that
$G(j \xi)=(2 \sin \xi)-e^{j \xi}-e^{-j \xi}$

Note that $G(0)=0$, using the integration property, we obtain
$X(j \xi)=\frac{G(j \xi)}{j \xi}+v G(0) 6(\xi)=\frac{2 \sin \xi}{j \xi^{2}}-\frac{2 \cos \xi}{j \xi}$.

4.0.1 Time and Frequency Scaling

$x(t) \stackrel{F}{\longleftrightarrow} X(j \xi)$,
Then
$x(a t) \stackrel{F}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{{ }^{j \xi}}{a}\right)$.

From the equation we see that the signal is compressed in the time domain, the spectrum will be extended in the frequency domain. Conversely, if the signal is extended, the corresponding spectrum will be compressed.

If $a=-1$, we get from the above equation,
$x(-t) \longleftrightarrow{ }^{F} X(-j \xi)$.
That is, reversing a signal in time also reverses its Fourier transform.

4.0.2 Duality

The duality of the Fourier transform can be demonstrated using the following example.
$\underset{=}{x(t)} \quad\left\{1, \quad t<T_{1} \stackrel{F}{\longleftrightarrow} X \underset{1}{ }(j \xi)=\underline{2 \sin \xi T_{1}}\right.$ 1

The symmetry exhibited by these two examples extends to Fourier transform in general. For anytransform pair, there is a dual pair with the time and frequency variables interchanged.

Example : Consider using duality and the

$$
e^{-|t|} \stackrel{F}{\longleftrightarrow} X(j \xi)=\frac{2}{1+\xi^{2}} \text { to find the Fourier }
$$ resulttransform $G(j \xi)$ of the signal

$$
g(t)=\frac{2}{1+t^{2}}
$$

Since $e^{-} \left\lvert\, \stackrel{F}{\longleftrightarrow} X(j \xi)=\frac{2}{1+\xi^{2}}\right.$, that is,

$$
\begin{gathered}
e_{\|}^{-t}=1 \infty 2_{2} \cap_{e^{j \xi t}} d \xi, \\
2 v \int^{-\infty} 1+\xi
\end{gathered}
$$

Multiplying this equation by $2 v$ and replacing t by $-t$, we have

$$
2 v e^{-t} \|^{t}=\int_{-\infty}^{\infty}\left(1+\xi^{2}\right) \quad \mid e^{-j \xi t} d \xi
$$

Interchanging the names of the variables t and ξ, we find that
$2 v e_{| |}^{-\xi}=\int_{-\infty}^{\infty}\left(\begin{array}{c}2 \\ \mid+{ }^{2}\end{array}\left|e^{-j \xi t} d \xi \Rightarrow F^{-1}\binom{2}{\left|1+t_{2}\right|}=2 v e^{-\xi}\right| i\right.$

$$
\left(\begin{array}{lll}
1
\end{array}\right) \quad(\quad)
$$

Based on the duality property we can get some other properties of Fourier transform:
$-j t x(t) \longleftrightarrow \frac{d X(j \xi)}{d \xi}$
$e^{i \xi_{0} t} x(t) \stackrel{F}{\longleftrightarrow} X\left(j\left(\xi-\xi_{0}\right)\right)$
$-\frac{1}{j} x(t)+6(t) \quad \int_{-\infty}^{\xi} x(\psi) d \psi$

4.0.3 Parseval's Relation

If $x(t) \stackrel{ }{\rightleftarrows} X(j \xi)$,
We have

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t \frac{1}{2 v} \int_{-\infty}^{\infty}|X(j \xi)|^{2} d \xi
$$

Parseval"s relation states that the total energy may be determined either by computing the energyper unit time $x(t)^{2}$ and integrating over all time or by computing the energy per unit frequendy
$\mid X(j \xi) \nmid / 2 v$ and integrating over all frequencies. For this reasoh, $\quad \chi(j \xi)^{2}$ is often referred toas the energy-density spectrum.

4.1 The convolution properties

$$
y(t)=h(t) * x(t) \stackrel{F}{\longleftrightarrow} Y(j \xi)=H(j \xi) X(j \xi)
$$

The equation shows that the Fourier transform maps the convolution of two signals into product oftheir Fourier transforms.
$H(j \xi)$, the transform of the impulse response, is the frequency response of the LTI system, whichalso completely characterizes an LTI system.

Example : The frequency response of a differentiator.
$y(t)=\frac{d x(t)}{d t}$.
From the differentiation property,

$$
Y(j \xi)=j \xi X(j \xi)
$$

The frequency response of the differentiator is

$$
H(j \xi)=\frac{Y(j \xi}{X(j \xi)}=j \xi
$$

Example : Consider an integrator specified by the equation:
$\left.y(t)=\int_{-\infty}^{t} x(\zeta) d\right\}$.
The impulse response of an integrator is the unit step, and therefore the frequency response of thesystem:
$H(j \xi)=\frac{1}{j \xi}+v 6(\xi)$.
So we have

$$
Y(j \xi)=H(j \xi) X(j \xi)=\frac{1}{j \xi}(j \xi)+v X(0) 6(\xi)
$$

which is consistent with the integration property.
Example : Consider the response of an LTI system with impulse response
$h(t)=e^{-a t} u(t), \quad a>0$
to the input signal
$x(t)=e^{-b t} u(t), \quad b>0$
To calculate the Fourier transforms of the two functions:
$X(j \xi)=\frac{1}{b+j \xi}$, and
$H(j \xi)=\frac{1}{a+j \xi}$.

Therefore,
$Y(j \xi)=\begin{gathered}1 \\ (a+j \xi)(b+j \xi)\end{gathered}$,
using partial fraction expansion(assuming $a \neq b$), we have
$\left.Y(j \xi)=\begin{array}{c}1\lceil 1 \\ \frac{1}{b-a}\left\lfloor\frac{1}{a+j \xi}\right.\end{array} \frac{1}{b+j \xi}\right\rfloor$
The inverse transform for each of the two terms can be written directly. Using the linearity property,we have
$y(t)=\frac{1}{b-a}\left[e^{-a t} u(t)-e^{-b t} u(t)\right]$.

We should note that when $a=b$, the above partial fraction expansion is not valid. However, with $a=b$, we have
$Y(j \xi)=\frac{1}{(a+j \xi)^{2}}$,

$e^{-a t} u(t) \stackrel{F}{\longleftrightarrow} \frac{1}{a+j \xi}$, and
$t e^{-a t} u(t) \stackrel{ }{\longleftrightarrow}{ }_{d}{ }_{d \xi}\left|\begin{array}{c}\lceil \\ a+j \xi\end{array}\right|, ~$

$$
-\lfloor\square
$$

so we have
$Y(t)=t e^{-a t} u(t)$.

4.2 The Multiplication Property

$$
r(t)=s(t) p(t) \longleftrightarrow R(j \xi) \quad \frac{1}{2} \int_{-\infty}^{+\infty} S(j 0) P(j(\xi-0)) d 0
$$

Multiplication of one signal by another can be thought of as one signal to scale or modulate the amplitude of the other, and consequently, the multiplication of two signals is often referred to as amplitude modulation.

Example :Let $s(t)$ be a signal whose spectrum $S(j \xi)$ is depicted in the figure below.

Also consider the signal
$p(t)=\cos \xi_{0} t$, then
$P(j \xi)=v 6\left(\xi-\xi_{0}\right)+v 6\left(\xi+\xi_{0}\right)$.

The spectrum of $r(t)=s(t) p(t)$ is obtained by using the multiplication property,

$$
\begin{aligned}
R(j \xi) & =1 \int_{2 v-\infty}^{+\infty} S(j \xi) P(j(\xi-0)) d 0 \\
& =\frac{1}{2} S\left(j \xi-\xi_{0}\right)+\frac{1}{2} S(j \xi+\xi) 2
\end{aligned}
$$

which is sketched in the figure below.

From the figure we can see that the signal is preserved although the information has been shiftedto higher frequencies. This forms the basic for sinusoidal amplitude modulation systems for communications.

Example: If we perform the following multiplication using the signal $r(t)$ obtained in the preceding example $p(t)=\cos \xi_{0} t$, that is, and

$$
g(t)=r(t) p(t)
$$

The spectrum of $P(j \xi), R(j \xi)$ and $G(j \xi)$ are plotted in the figure below.

If we use a lowpass filter with frequencyresponse $H(j \xi)$ that is constant at low frequencies and zero at high frequencies, then the output will be a scaled replica of $S(j \xi)$. Then the output willbe scaled version of $s(t)$ - the modulated signal is recovered.

4.3 Summary of Fourier Transform Properties and Basic Fourier Transform Pairs

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Section	Property	Aperiodic signal	Fourier transform
		$\begin{aligned} & x(t) \\ & y(t) \end{aligned}$	$\begin{aligned} & X(j \omega) \\ & Y(j \omega) \end{aligned}$
4.3.1	Linearity	$a x(t)+b y(t) \quad a X(j \omega)+b Y(j \omega)$	
4.3.2	Time Shifting		$e^{-j \omega t_{0}} X(j \omega)$
4.3.6	Frequency Shifting	$e^{j \omega_{0} t} x(t)$	$X\left(j\left(\omega-\omega_{0}\right)\right)$$X^{*}(-j \omega)$
4.3.3	Conjugation	$\begin{aligned} & x^{*}(t) \\ & x(-t) \end{aligned}$	
4.3.5	Time Reversal		$X(-j \omega)$
4.3.5	Time and Frequency Scaling	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{j \omega}{a}\right)$
4.4	Convolution	$x(t) * y(t)$	$X(j \omega) Y(j \omega)$
4.5	Multiplication	$x(t) y(t)$	$\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(j \theta) Y(j(\omega-\theta)) d \theta$
4.3.4	Differentiation in Time	$\frac{d}{d t} x(t)$	$j \omega X(j \omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t) d t$	$\frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(\omega)$
4.3.6	Differentiation in Frequency	$t x(t)$	$j \frac{d}{d \omega} X(j \omega)$
			$\left\{\begin{array}{l} X(j \omega)=X^{*}(-j \omega) \\ \operatorname{Re}\{X(j \omega)\}=\operatorname{Re}\{X(-j \omega)\} \end{array}\right.$
4.3.3	Conjugate Symmetry for Real Signals	$x(t)$ real	$\left\{\begin{array}{l} \mathscr{I}_{m z}\{X(j \omega)\}=-\mathscr{I}_{n \xi}\{X(-j \omega)\} \\ \|X(j \omega)\|=\|X(-j \omega)\| \\ \Varangle X(j \omega)=-\Varangle X(-j \omega) \end{array}\right.$
4.3.3	Symmetry for Real and Even Signals	$x(t)$ real and even	$X(j \omega)$ real and even
4.3.3	Symmetry for Real and Odd Signals	$x(t)$ real and odd	$X(j \omega)$ purely imaginary and odd
4.3.3	Even-Odd Decomposition for Real Signals	$\begin{array}{ll} x_{e}(t) & =\mathcal{E} v\{x(t)\} \\ x_{o}(t) & =\mathcal{O} d x(t) \\ \end{array}$	$\mathcal{R e}_{\mathscr{e}}\{X(j \omega)\}$
4.3.7	Parseval's Relation for Aperiodic Signals		
	$\int_{-\infty}^{+\infty}\|x(t)\|^{2} d t$	$\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|X(j \omega)\|^{2} d \omega$	

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

System Characterized by Linear Constant-Coefficient Differential Equations

An LTI system described by the following differential equation:
$\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d^{k}}=\sum_{k k=0}^{M} b \frac{d^{k} X(t)}{d t^{k}}$,
which is commonly referred to as an N th-order differential equation. The frequency response of thisLTI system
$H(j \xi)=\frac{Y(j \xi)}{X(j \xi)}$,
where $X(j \xi), Y(j \xi)$ and $H(j \xi)$ are the Fourier transforms of the input $x(t)$, output $y(t)$ andthe impulse response $h(t)$, respectively.

Applying Fourier transform to both sides, we have

$$
\begin{equation*}
\left.F\left\{\sum_{k=0}^{N} a_{k} d^{k} y(t)\right\} t^{k}\right\}=F\left\{\sum_{k=0}^{M b_{k}} d d^{k} x(t)\right\}, \tag{4.69}
\end{equation*}
$$

From the linearity property, the expression can be written as
$\sum_{k=0}^{N} a_{k} F\left\{d d^{k} y(t)\right\}=\sum_{k=0}^{M} b_{k} F\left\{\left(d^{k} x(t)\right\}\right.$.
From the differentiation property,

$$
\sum_{k=0}^{N} a(j \xi)^{k} Y(j \xi)=\sum_{k=0}^{M} b(j \xi)^{k} X(j \xi) \quad \Rightarrow \quad H(j \xi)=\begin{align*}
& Y(j \xi) \tag{4.71}\\
& X(j \xi)=\sum_{k=0}^{M} \sum_{k}^{N} a(j \xi)^{k}
\end{align*}
$$

$H(j \xi)$ is a rational function, that is, it is a ratio of polynomials in $(j \xi$).

Example : Consider a stable LTI system characterized by the differential equation $\xrightarrow{d y(t)}+a y(t)=x(t)$,
with

$$
H(j \xi)=\frac{1}{j \xi+a} .
$$

Te impulse response of this system is then recognized as
$h(t)=e^{-a t} u(t)$.
Example : Consider a stable LTI system that is characterized by the differential equation

$$
\frac{d^{2}}{\frac{y(t)}{d t^{2}}+4_{-}^{d y(t)}+3 y(t)} \frac{d x(t}{) d t}+2 x(t) .
$$

The frequency response of this system is

$$
H(j \xi)=\underset{(j \xi)^{2}+4(j \xi)+3}{\substack{(j \xi)+2}}=\frac{j \xi+2}{(j \xi+1)(j \xi+3)}
$$

Then, using the method of partial-fraction expansion, we find that
$H(j \xi)=\frac{1 / 2}{j \xi+1}+\frac{1 / 2}{j \xi+3}$.

The inverse Fourier transform of each term can be recognized as
$h(t)=\frac{1}{2} e^{-t} u(t)+\frac{1}{2} e^{-3 t} u(t)$.

Example: Consider a system with frequency

$$
H(j \xi)=\frac{j \xi+2}{(j \xi+1)(j \xi+3)} \text { and suppose }
$$ response ofthat the input to the system is

j\xi+1'j\xi+3
j\xi+1'j\xi+3
1 (j\xi+1)(j\xi+
1 (j\xi+1)(j\xi+
3))
3))
$Y(j \xi)=\underline{1 / 4}$
$+$

$$
j \xi+1
$$

By inspection, we get directly the inverse Fourier transform:

UNIT - 3
SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS
Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics.
Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

Linear systems

A system is said to be a linear if it obeys homogeneity and additivity properties. This implies that the response of a linear system to weighted sum of input signals is equal to the same weighted sum of responses of the system to each of those signals.
Homogeneity property: This property says if input signal weighted by any arbitrary constant then output signal also weighted by same arbitrary constant
$y(t)$ is response of input signal $x(t)$
$x(t) \rightarrow y(t)=T\lfloor x(t)\rfloor$
$\operatorname{ax}(t) \rightarrow T[a x(t)]=a T[x(t)]=a y(t)$ wher a is any arbitary constant
Additive property: Response of system to sum of two input signals is equal to sum of individual response of the system.
$x_{1}(t) \rightarrow y_{1}(t)=T\left[x_{1}(t)\right]$
$x_{2}(t) \rightarrow y_{2}(t)=T\left[x_{2}(t)\right]$
$x_{1}(t)+x_{2}(t) \rightarrow T\left[x_{1}(t)+x_{2}(t)\right]=T\left[x_{1}(t)\right]+T\left[x_{2}(t)\right]=y_{1}(t)+y_{2}(t)$
Combining above two properties
$x(t)=\sum_{i=1}^{N} a_{i} x_{i}(t)$ be the sum of N number of inpit signals wher a_{i} is Arbitrary constant
Response
$y(t)=T\left[\sum_{i=1}^{N} a_{i} x_{i}(t)\right]=\sum_{i=1}^{N} a_{i} T\left[x_{i}(t)\right]=\sum_{i=1}^{N} a_{i} y_{i}(t)$
Where $y_{i}(t)$ is the output of the system in response to the in puts $x_{i}(t)$

Classification of linear systems

Lumped and Distributed system
Time - Invariant and Time Variant system
Lumped and Distributed system: A Lumped System consists of lumped elements which are interconnected in particular way. The energy in the system is considered to be stored or dissipated in distinct isolated elements. The disturbance initiated at any point is propagated instantaneously at every point in the system. The dimension of elements is very small compared to wave length of the signals to be transmitted. Lumped system obeys Ohms law and Kirchhoff laws. They can be expressed with ordinary differential equations. Examples are TVS, motors, computers, any packed sytems
Distributed systems are those in which elements are distributed over a long distances and dimensions of the circuits are small compared to the wave length of signals to be transmitted. More over such system takes finite amount of time for disturbance at one point to be propagated to the other point.They can be expressed with partial differential equations. Example are wave guides, optical fiber, transmission lines, antennas.

Linear Time Invariant (LTI) System: A system said to be LTI if it satisfies linear and invariance properties. Stated in another way, A LTI system whose parameters do not change with time. LTI system is characterized by linear equations such as algebraic, differential, or difference equations with constant coefficients.
Example: Circuits using passive elements are LTI systems
For LTI system, if input is delayed by t_{0} seconds the system satisfies superposition and homogeneity principles. Also, the output delayed by the same time t_{0} seconds.
$x(t) \rightarrow y(t)=T[x(t)]$
$x\left(t-t_{0}\right) \rightarrow T\left[x\left(t-t_{0}\right)\right]$
if $y\left(t, t_{0}\right)=y\left(t-t_{0}\right)=T\left[x\left(t-t_{0}\right)\right]$ then system said to be time invariant sytem
Linear Time Variant (LTV) System: A system said to be LTV if it satisfies the linear property butnot the time invariant. For LTV system, if input delayed by t_{0} seconds, the system satisfies superposition and homogeneity properties but output varies with time t_{0}. A LTV system whose parameters change with time. The coefficients in the differential equations are time variant.
$x(t) \rightarrow y(t)=T[x(t)]$
$x\left(t-t_{0}\right) \rightarrow T\left[x\left(t-t_{0}\right)\right]$
if $y\left(t, t_{0}\right)=y\left(t-t_{0}\right) \neq T\left[x\left(t-t_{0}\right)\right]$ then system said to be time variant sytem

Impulse response and response of LTI system

Let us consider $x(t)$ any arbitary signal
$\widehat{x(t)}$ is an approximation of $x(t)$ and it can be expressed as liniear combination of shifted impulses $x(t)=\ldots \ldots \ldots+x(-2 \Delta) \delta_{\Delta}(t+2 \Delta)+x(-\Delta) \delta_{\Delta}(t+\Delta)+x(0) \delta_{\Delta}(t)+x(\Delta) \delta_{\Delta}(t-\Delta)$ $+x(2 \Delta) \delta_{\Delta}(t-2 \Delta)+\ldots \ldots \ldots .+x(k \Delta) \delta_{\Delta}(t-k \Delta)$
$\delta_{\Delta}(t)= \begin{cases}\frac{1}{\Delta} & 0 \leq t \leq \Delta \\ 0 & \text { othrt wise }\end{cases}$
$\widehat{x(t)}=\sum_{k-\infty}^{\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta$
$x(t)=\lim _{\Delta \rightarrow 0} \widehat{x(t)}$

Signal approximation

as $\Delta \rightarrow 0$, summation becomes integral, $\delta_{\Delta}(t) \rightarrow \delta(t), k \Delta \rightarrow \tau, \Delta \rightarrow d \tau$
$x(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau$
$y(t)$ is response of $x(t)$
$y(t)=T\lfloor x(t)\rfloor$
$y(t)=T\left[\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau\right]$
$y(t)=\int_{-\infty}^{\infty} x(\tau) T[\delta(t-\tau)] d \tau$
$h(t-\tau)=T[T[\delta(t-\tau)]$ this satisfies time invariant property
$y(t)=h(t)=T[\delta(t)]$ this shows impulse response of sytem

Impulse response of LTI system due to an impulse input applied at $\mathrm{t}=0$ is $\mathrm{h}(\mathrm{t})$ Hence $y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)$
This is known as convolution integral and it gives relationship among input signal, output signal andimpulse response of system.LTI system completely characterized by impulse response

Frequency response of LTI system:

Let us consider LTI system with impulse response $h(t)$ and $y(t)$ is response of input signal $x(t)$. Inputand output relationship of system given by convolution integral.
$y(t)=\int_{-\infty}^{\infty} x(\tau) T[\delta(t-\tau)] d \tau$
Fourier transform of input $\mathrm{x}(\mathrm{t})$, output $\mathrm{y}(\mathrm{t})$ and impulse response $\mathrm{h}(\mathrm{t})$ are $\mathrm{X}(\omega), \mathrm{Y}(\omega)$ and $\mathrm{H}(\omega)$ respectively.

$$
Y(\omega)=\int_{-\infty}^{\infty} y(t) d t
$$

$Y(\omega)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau\right] e^{-j \omega t} d t$
$Y(\omega)=\int_{-\infty}^{\infty} x(\tau)\left[\int_{-\infty}^{\infty} h(t-\tau) d t\right] e^{-j \omega t} d \tau$
$t-\tau=\lambda, t=\lambda+\tau, d t=d \lambda$
$Y(\omega)=\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \int_{-\infty}^{\infty} h(\lambda) e^{-j \omega \lambda} d \lambda$
$Y(\omega)=X(\omega) H(\omega)$
$H(\omega)$ is a complex valued function and can be expressed as
$H(\omega)=|\boldsymbol{H}(\omega)| \angle \boldsymbol{H}(\omega)$
$|H(\omega)|$ is magnetude response of sytem and $\angle H(\omega)$ phase response of sytem
Magnetude response is symmetric and phase response is anti symmetric.

Response to Eigen functions

If input to the system is an exponential function $x(t)=e^{j \omega t}$ then output $y(t)$
$y(t)=x(t) * h(t)$
$y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau$
$y(t)=\int_{-\infty}^{\infty} e^{j \omega(t-\tau)} h(\tau) d \tau=e^{j \omega t} \int_{-\infty}^{\infty} e^{-j \omega \tau} h(\tau) d \tau=e^{j \omega t} H(\omega)$
Output is a complex exponential of the same frequency as input multiplied by the complex constant $H(\omega)$. An inputs signal is called Eigen functions of the system if the corresponding output is a constantmultiple of the input signal. Thus the functions $e^{j \omega t}, \sin \omega t$, and $\cos \omega t$ all Eigen functions as we get
the same function the output as in
input.Properties of LTI system
Commutative Property
$\boldsymbol{y}(\boldsymbol{t})=\boldsymbol{x}(\boldsymbol{t}) * \boldsymbol{h}(\boldsymbol{t})=\boldsymbol{h}(\boldsymbol{t}) * \boldsymbol{x}(\boldsymbol{t})$
$y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau=\int_{-\infty}^{\infty} h(t-\tau) x(\tau) d \tau$
Associate property
This implies that a cascading of two or more LTI system will results to single system with impulseresponse equal to the convolution of the impulse response of the cascading systems.
$\left\{x(t) * h_{1}(t)\right\} * h_{2}(t)=x(t) *\left\{h_{1}(t) * h_{2}(t)\right\}$

Distributive Property

This property gives that addition of two or more LTI system subjected to same input will results singlesystem with impulse response equal to the sum of impulse response of two or more individual systems.

$x(t) *\left\{h_{1}(t)+h_{2}(t)\right\}=x(t) * h_{1}(t)+x(t) * h_{2}(t)$
Static and dynamic system
A system is static or memory less if its output at any time depends only on the value of its input at that instant of time. For LTI systems, this property can hold if its impulse response is itself an impulse. But convolution property, we know that the output depends on the previous samples of the input, therefore an LTI system has memory and hence it is dynamic system.

Causality

A continuous time LTI system is said to causal if and only if it impulse response is $h(t)=$ 0 fort<0, then integral becomes
$y(t)=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau$
$h(t)=\left\{\begin{array}{l}\text { non zero for } t \geq 0 \\ \text { or } \quad \text { other wise }\end{array}\right.$
Stability: a continuous time system is bounded input, bounded output stable if and only if the impulseresponse is absolutely Integrable.
Consider LTI system with impulse response $h(t)$. the output $y(t)$ is
$y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau$
$|y(t)|=\left|\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau\right|$
$|y(t)|=\int_{-\infty}^{\infty}|h(\tau) \| x(t-\tau)| d \tau$
If $\mathrm{x}(\mathrm{t})$ is bounded and $|x(t)| \leq M_{x}<\infty$ then
$|y(t)| \leq \int_{-\infty}^{\infty} M_{x}|h(\tau)| d \tau=M_{x} \int_{-\infty}^{\infty}|h(\tau)| d \tau$
For bounded output $y(t)<\infty$, the impulse response should be absolutely integrable. Hence
$\int_{-\infty}^{\infty}|h(\tau)| d \tau<\infty$
Above equation gives necessary and sufficient condition for BIBO stability.
Inevitability:

A system T said to be invertible if and only if there exits an inverse system T^{-1} for such that T T-1 is an identical system. For an LTI system with impulse response $h_{1}(t)$, this is equivalent to the existence of another system with impulse response $h_{2}(t)$ such that $\mathbf{h}_{1}(t) * \mathbf{h}_{2}(t)=\delta(t)$.

Transfer Function of LTI System:

Transfer function of LTI system defined as the ratio of Fourier transform of the output signal $Y(\omega)$ toFourier transform of the input signal $X(\omega)$.It is expressed as
$H(\omega)=\frac{Y(\omega)}{X(\omega)}$
Inverse Fourier transforms of $H(\omega)$ gives the impulse response of the system. That is $h(\mathrm{t})=\mathrm{IFT}$ of $H(\omega)$.

In general Input and output relationship of continuous time causal LTI system described by linearconstant coefficient differential equations with zero initial conditions is given by
$\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}$
Where a_{k} and b_{k} are constant coefficients the order N refer to the highest derivative of $\mathrm{y}(\mathrm{t})$ in aboveequation.
Apply Fourier Transform on both sides of above equation
$\sum_{k=0}^{N} a_{k}(j \omega)^{k} Y(\omega)=\sum_{k=0}^{M} b_{k}(j \omega)^{k} X(\omega)$
$\frac{Y(\omega)}{X(\omega)}=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}$
System function $=$ Transfer function $=H(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{\sum_{k=0}^{M} b_{k}(j \omega)^{k}}{\sum_{k=0}^{N} a_{k}(j \omega)^{k}}$

Distortion less Transmission System:

Distortion less transmission through the LTI system requires that the response be exact replica of inputsignal. The replica may have different magnetude and delayed in time.
Therefore,
any arbitary input signal $x(t)$, if the output $y(t)=k x\left(t-t_{0}\right)$ Apply the
Fourier transform
$Y(\omega)=k X(\omega) e^{-j \omega t_{0}}$
$\frac{Y(\omega)}{X(\omega)}=H(\omega)=k e^{-j \omega t_{0}}$

$|H(\omega)|=k, \quad \angle H(\omega)=-\omega t_{0}$ or $\angle H(\omega)=n \pi-\omega t_{0}$ Where n is integer number
Therefore, to achieve distortion less transmission through LTI system, magnetude response of system $|H(\omega)|$ must be constant over entire frequency range and phase response of the system $\angle H(\omega)$ mustbe linear with frequency.

Band width of signals and System

Band width of signals: it is the range of significant frequency components present in the signal. A signal may have frequency components in the entire frequency range from $-\infty$ to ∞. For any practical signals, the energy content decreases with frequency, only some of frequency components of signals have significant amplitude within a certain frequency band; outside this band have negligible amplitude. The amplitude of significant frequency component is within the $\frac{1}{\sqrt{2}}$ times (3dB) of
maximum signal amplitude.

System Band width:

The band width of system is defined as the interval of frequencies over which the magnitude spectrum of $H(\omega)$ rema $\underset{\sqrt{2}}{1}$ S within times $(3 \mathrm{~dB})$ its value at the mid band. The band width of system is
$\omega_{1}=$ lower cutoff frequency $=$ lower frequency at which magnetude of $H(\omega) \frac{1}{\sqrt{2}}$
$(3 \mathrm{~dB})$ its value at the midband
$\omega_{2}=$ lower cutoff frequency $=$ highest frequency at which magnetude of $H(\omega) \frac{1}{\sqrt{2}}$
(3dB) of its value at the midband.
Band width $=\omega_{2}-\omega_{1}$
For distortion less transmission, a system should have infinite bandwidth. But due to physical limitations it is impossible to design an ideal filters having infinite bandwidth.

For satisfactory distortion less transmission, therefore, an LTI system should have high bandwidth compared to the signal bandwidth.

The filter characteristics of linear system:

The system processes the input signal in a way that is characteristics of the system. The system modifies the spectral density function of input signal according to transfer function. It is observed that the system act as some kind of filter to various frequency components. Some frequency componentsare boosted in strength, some are attenuated, and some may remain unaffected.

Similarly, each frequency component suffers a different amount of phase shift in the process of transmission. LTI system acts as filter depending on the transfer function of system. The transfer function acts asweighting function to different frequency components of input signal.
LTI system may be classified into five types of
filtersLow pass filter
High pass filter
Band pass filter
Band reject
filterAll pass
filter.
The pass band of a filter the range of frequencies that allowed by the system without distortion. Thestop band of filter is the range of frequencies that attenuated by the system. Ideal filters:
An Ideal filter passes all frequency components in its pass band without distortion and completely blocks frequency components outside of pass band. There is discontinuity between pass band and stop band in frequency spectrum. But practical filters, there is gradual transition gap between pass band and stop band, The range of frequencies over which there is a gradual attenuation between pass band and stop band is called transition band. Filters with small gap are very difficult to design.

Ideal Low Pass Filter:

An ideal low pass filter transmits all frequency components below the certain frequency $\omega_{C} \mathrm{rad} / \mathrm{sec}$ called cutoff frequency, without distortion. The signal above these frequencies is filtered completely.
The transfer function of Idel Low pass filter given by

Magnetude response of Ideal LPF $|H(\omega)|=\left\{\begin{array}{cc}1 & |\omega|<W_{1} \\ 0 & |\omega|>W_{1}\end{array}\right.$
Phase response of Ideal LPF $\angle H(\omega)=-j \omega t_{0}$ for $|\omega|<\omega_{C}$

Scanned with
(a)

(b)

Ideal High Pass Filter:

An ideal high pass filter transmits all frequency components above the certain frequeņcy
eccalled cutoff frequency, without distortion. The signal below these frequencies is filtered completely.
The transfer function of Idel high pass filter given by
Phase response of Ideal LPF $\angle H(\omega)=-j \omega t_{0}$ for $|\omega|>\omega_{C}$
$H(\omega)=\left\{\begin{aligned} 0 & |\omega|<W_{1} \\ e^{-j \omega t_{0}} & |\omega|>W_{1}\end{aligned}\right.$
Magnetude response of Ideal $L P F|H(\omega)|=\left\{\begin{array}{cc}0 & |\omega|<\omega_{c} \\ 1 & |\omega|>\omega_{c}\end{array}\right.$

cs

 Scanned with CamScanner
(b)

Ideal Band Pass Filter:

An ideal band pass filter transmits all frequency components within certain frequency band $\omega_{C_{n}}$ orad/sec, without distortion. The signal with frequency outside this band is stopped completely.
The transfer function of Idel band pass filter given by
$H(\omega)=\left\{\begin{array}{l}e^{-j \omega t_{0}} \quad W_{1}<|\omega|<W_{2} \\ 0 \quad \text { otherwise }\end{array}\right.$
Magnetude response of Ideal $B P F|H(\omega)|=\left\{\begin{array}{cc}1 & W_{1}<|\omega|<W_{2} \\ 0 & 0 \text { otherwise }\end{array}\right.$
Phase response of Ideal BPF $\angle H(\omega)=-j \omega t_{0}$ for $\omega_{C_{2}}<|\omega|<\omega_{C_{3}}$

CS
CamScan(a)

(b)

Ideal Band Reject Filter:

An ideal band reject filter rejects all frequency components within certain frequency band $\omega_{C_{3}}$
torad/sec. The signal outside this band is transmitted without distortion.
The transfer function of Idle band reject filter given by

$$
H(\omega)=\left\{\begin{array}{cc}
0 & W_{1}<|\omega|<W_{2} \\
e^{-j \omega t_{0}} & \text { otherwise }
\end{array}\right.
$$

Magnetude response of Ideal $B P F|H(\omega)|=\left\{\begin{array}{cc}0 & W_{1}<|\omega|<W_{2} \\ 1 & \text { Otherwise }\end{array}\right.$
Phase response of Ideal BPF $\angle H(\omega)=-j \omega t_{0}$ for $|\omega|<W_{1}$ and $|\omega|>W_{2}$

Causality and Physical Realizability: Paley - Wiener Criterion For physically realizable systems, that cannot have response before the input signal applied. In time domain approach the impulse response of physically realizable systems must be causal that is $h(t)=0$ for $\mathrm{t}<0$, this is condition known as causal condition. In frequency domain, this criterion implies that a necessary and sufficient condition for magnetude response $|H(j \omega)|$ to be physically $\int_{-\infty}^{\infty} \frac{\| \ln |H(j \omega)| \mid}{1+\omega^{2}} d \omega<\infty$
realizable is
This condition known as the Paley - Wiener criterion. To satisfy this condition the function $|H(j \omega)|$ must be square integrable that is
$\int_{-\infty}^{\infty}|H(j \omega)|^{2} d \omega<\infty$
All causal systems that satisfy the Paley - Wiener criterion are physically realizable.
Magnetude function $|H(j \omega)|$ may be zero at some discrete frequencies but it cannot be zero over finite band of frequencies since this will cause the integral to become infinite. Therefore Idle filters are not physically realizable. It can be concluding that magnetude function cannot fall off to zero faster
than exponential order.
$|H(j \omega)|=k e^{-\varepsilon|\omega|}$ is permissible
$|H(j \omega)|=k e^{-\alpha \omega^{2}}$ this Gaussian error curve is not permissible.
But it possible to construct physically realizable filters close to the ideal filter characteristics.
$H(\omega)=\left\{\begin{array}{cc}e^{-j \omega t_{0}} & |\omega|<\omega_{C} \\ \varepsilon & |\omega|>\omega_{C}\end{array}\right.$
ε

Band Width and Rise Time:

The system band width can be obtained from rise time, which can be derived from output response ofthe system.
Rise time : the rise time t_{r} of the output response is defined as the time the response takes to reach from 10% to 90% of the maximum value of the signal or in general it is the time of response to reach from zero to the final value of the signal.
$\left.\frac{d y(t)}{d t}\right|_{t_{0}}=\frac{1}{t_{r}}$
Relationship between Band width and rise time
Consider ideal LPF, its transfer function is given $b H(\omega)=\left\{\begin{array}{rr}e^{-j \omega t_{0}} & |\omega|<\omega_{C} \\ 0 & |\omega|>\omega_{C}\end{array}\right.$
Where ω_{c} cut off frequency or 3 dB band width of
filterApply Inverse Fourier transform
$h(t)=\frac{1}{2 \pi} \int_{-\omega_{C}}^{\omega_{C}} e^{-j \omega t_{0}} e^{j \omega t} d \omega$
$h(t)=\frac{1}{2 \pi} \int_{-\omega_{C}}^{\omega_{C}} e^{j \omega\left(t-t_{0}\right)} d \omega=\frac{1}{\pi} \frac{\sin \omega_{C}\left(t-t_{0}\right)}{\left(t-t_{0}\right)}$
if input is impulse then output is $y(t)=h(t) * \delta(t)=\mathrm{h}(\mathrm{t})$
$y(t)=\int_{-\infty}^{\infty} h(\tau) d \tau=\int_{-\infty}^{\infty} \frac{\omega_{C}}{\pi} \operatorname{sinc} \omega_{C}\left(t-t_{0}\right) d t$
$\frac{d y(t)}{d t}=\frac{\omega_{C}}{\pi} \sin c \omega_{C}\left(t-t_{0}\right)$
$\left.\frac{d y(t)}{d t}\right|_{t_{0}}=\frac{\omega_{C}}{\pi}=\frac{1}{t_{r}}$
$t_{r}=\frac{\pi}{\omega_{C}}$

Product of rise time and bandwidth is constant
Rise time inversely proportional to the system band width.
Concept of convolution in time domain:
The process of expressing the output signal in terms of the superposition of weighted and time
shifted impulse response is called convolution. Convolution is a particularly powerful way of characterizingthe input - output relationship of LTI systems. The mathematical tool for evaluating the convolution ofcontinuous time signals is called convolution integral; for discrete time signals, it is called convolution sum . the convolution integral plays an important role in system analysis in time and frequency domains. It is important process for signal processing and detection in communication systems.

The convolution integral

Let $x_{1}(t)$ and $x_{2}(t)$ be two continuous time signals. Then convolution of $x_{1}(t)$ and $x_{2}(t)$ can be expressed as
$y(t)=x_{1}(t) * x_{2}(t)=y(t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau$ where τ is dummy variable
Thus the output of any continuous LTI system is the convolution of the input $\mathrm{x}(\mathrm{t})$ with impulse response $h(t)$ of the system.
Case I : if input signal is causal that is $\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}<0$
$y(t)=\int_{0}^{\infty} x(\tau) h(t-\tau) d \tau$
Case II
System is causal that is $\mathrm{h}(\mathrm{t})=0$ for $\mathrm{t}<0$ then
$y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau$
Case III
Both input signal and system are causal then
$y(t)=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau$
Properties of convolution integral
Commutative property
Let $x_{1}(t)$ and $x_{2}(t)$ be two continuous time signals
$x_{1}(t) * x_{2}(t)=x_{2}(t) * x_{1}(t)$
$x_{1}(t) * x_{2}(t)=\int_{-\infty}^{20} x_{1}(\tau) x_{2}(t-\tau) d \tau$
$t-\tau=\lambda$
$x_{1}(t) * x_{2}(t)=\int_{-\infty}^{\infty} x_{1}(t-\lambda) x_{2}(\lambda) d \lambda=x_{2}(t) * x_{1}(t)$
$x_{1}(t) *\left[x_{2}(t)+x_{3}(t)\right]=x_{1}(t) * x_{2}(t)+x_{1}(t) * x_{3}(t)$
Distributive Property

Associate property

$x_{1}(t) *\left[x_{2}(t) * x_{3}(t)\right]=\left[x_{1}(t) * x_{2}(t)\right] * x_{3}(t)=x_{1}(t) * x_{2}(t) * x_{3}(t)$
Shift property
If the signal $x_{2}(t)$ shifted by t_{0} sec then convolution of
$x_{1}(t) * x_{2}\left(t-t_{0}\right)=x\left(t-t_{0}\right)$ and
If $x_{1}(t)$ and $x_{2}(t)$ shifted by t_{1} and t_{2} respectively
$x_{1}\left(t-t_{1}\right) * x_{2}\left(t-t_{2}\right)=x\left(t-t_{1}-t_{2}\right)$
Convolution of function with impulse
$x(t) * \delta(t)=x(t)$
$x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$
$x\left(t-t_{0}\right) * \delta(t)=x\left(t-t_{0}\right)$
Convolution of function with unit step
Any arbitrary function $x(t)$ with unit step function $u(t)$
$x(t) * u(t)=\int_{-\infty}^{t} x(\tau) d \tau$
Proof
$u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$
$x(t) * u(t)=x(t) * \int_{-\infty}^{t} \delta(\tau) d \tau$
$x(t) * u(t)=x(t) * \int_{-\infty}^{t} x(\tau) * \delta(\tau) d \tau=\int_{-\infty}^{t} x(\tau) d \tau$

Width property

Let us consider finite duration of two signals $x_{1}(t)$ and $x_{2}(t)$ are T_{1} and T_{2} respectively thenduration of $\mathbf{y}(\mathrm{t})=x_{1}(t) * x_{2}(t)$ is equal to the sum of duration of $x_{1}(t)$ and $x_{2}(t)$.
$\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$
Also its area under finite signals $x_{1}(t)$ and $x_{2}(t)$ are A_{1} and A_{2} respectively then the area under y
(t) is product of both areas
$\mathrm{A}=\operatorname{area}$ under $\mathrm{y}(\mathrm{t})=$ area under $x_{1}(t)$ and area under $x_{2}(t)=\mathrm{A}_{1} \quad \mathrm{~A}_{2}$

Convolution property of Fourier Transform
Fourier transforms pair of two signals given
$x(t) \leftrightarrow X(\omega) \quad h(t) \leftrightarrow H(\omega)$
by
F T of $[x(t) * h(t)]=F T$ of $\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau$
$=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[x(\tau) h(t-\tau) d \tau] e^{-j \omega t} d t$
$t-\tau=\lambda$
$t=\tau+\lambda$
F T of $[x(t) * h(t)]=\int_{-\infty}^{\infty} x(\tau) d \tau \int_{-\infty}^{\infty} h(\lambda) e^{-j \omega(x+\lambda)} d \lambda$
$=\int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau \int_{-\infty}^{\infty} h(\lambda) e^{-j \omega \lambda} d \lambda=X(\omega) H(\omega)$
Convolution in frequency domain:
Fourier Transform of $X(\omega) * H(\omega)=2 \Pi$ Fourier transform of $[x(t)$
$\mathrm{h}(\mathrm{t})]$ Fourier transform of $[\mathrm{x}(\mathrm{t}) \mathrm{h}(\mathrm{t})]=\int_{-\infty}^{\infty} \mathrm{x}(\mathrm{t}) \mathrm{h}(\mathrm{t}) e^{-j \omega \mathrm{t}} d t$
$=\int_{-\infty}^{\infty}\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\lambda) e^{j \lambda t} d \lambda\right] h(t) e^{-j \omega t} d t$
$==\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\lambda)\left[\int_{-\infty}^{\infty} h(t) e^{-j(\omega-\lambda) t} d t\right] d \lambda$
$=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\lambda) H(\omega-\lambda) d \lambda$
$=\frac{1}{2 \pi} X(\omega) * H(\omega)$
FT of $[\mathrm{x}(\mathrm{t}) \mathrm{h}(\mathrm{t})]==\frac{1}{2 \pi} X(\omega) * H(\omega)$
Thus convolution in one domain is transformed a product operation in the other domain

Graphical representation of Convolution

When two signals are provided in graphical form, the convolution can be performed by graphicalmethod. It involves the following steps.
1.

For given signals $x_{1}(t)$ and $x_{2}(t)$, draw thesignals as function

$$
\begin{equation*}
x_{1}(\tau) \text { and } x_{2}(\tau) \tag{122}
\end{equation*}
$$

2. reversal of $x_{2}(\tau)$.then shift function by time t to form $x_{2}(t-\tau)$.
3. τ axis with large time shift t along the negative axis.
4. the signals $x_{1}(\tau)$ and $x_{2}(t-\tau)$ and integrate over the period of two signals to obtain convolution at t .
5. convolution using step 4.
6.

obtained in steps 4 and 5 as function of t.

UNIT - 4

LAPLACE TRANSFORM AND Z-TRANSFORM

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis. Z-Transforms Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse

Z-transform, Properties of Z- transforms.

Complex Fourier Transform

Fourier transform is a tool which allows representing an arbitrary function $f(t)$ by continuous sum of exponential function of form of $e^{j \omega t}$. These frequencies are restricted to the $j \omega$ axis in the complex plane.
$f(t) \leftrightarrow F(\omega)$
$F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$
$f(t)=\frac{1}{2 \pi} \int_{-\phi}^{\infty} F(\omega) e^{j \omega t} d \omega$
The variable always appears with j and hence the integral can also be written as function of $\boldsymbol{j} \omega$
$F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$
Let a function $\emptyset(t)=f(t) e^{-\sigma t}$
fourier transform of $\emptyset(t)=\int_{-\infty}^{\infty} f(t) e^{-\sigma t} e^{-j \omega t} d t$
$=\int_{-\infty}^{\infty} f(t) e^{-(\sigma+j \omega) t} d t$
$F T$ of $\emptyset(t)=F(\sigma+j \omega)$
$\emptyset(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\sigma+j \omega) e^{j \omega t} d \omega$
$f(t) e^{-\sigma t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\sigma+j \omega) e^{j \omega t} d \omega$
$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\sigma+j \omega) e^{(\sigma+j \omega) t} d \omega$
$\sigma+j \omega=s, \quad d s=j d \omega, \quad \frac{d s}{j}=d \omega$

Limit of integration for $\omega=-\infty$ to ∞ become $\sigma-j \infty$ to $\sigma+j \infty$ for variables
$f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s$
Represent $f(t)$ as continuous sum of exponential of complex frequency $s=\sigma+j \omega$. This is special kindof Fourier Transform called as complex Fourier transform or Bilateral Laplace $T(3) \mathrm{nsfo} \int_{-\infty}^{\infty} \cdot f(t) e^{-s t} d t$
$f(t) \leftrightarrow F(s)$
Unilateral Laplace transforms
Functions of interest are causal that is $f(t)=0$ for $t<0$, the Laplace transform of such functions are termedas unilateral or one sided Laplace Transforms.
$F(s)=\int_{0^{-}}^{\infty} f(t) e^{-s t} d t$
Lower limit indicates inclusions of initial conditions, impulse functions and its derivative $0 \bar{a} t \mathrm{t}=$ Convergence of Laplace Transform
The Fourier Transform of $f(t)$ converge if $f(t)$ is absolutely integrable, similarly the necessary condition for convergence of Laplace Transform is absolute integrability of $f(t) e^{-\sigma t}$
$\int_{-\infty}^{\infty}\left|f(t) e^{-\sigma t}\right| d t<\infty$

Existence of the Laplace Transform

Laplace Transform exists if it converge in the given interval. These fore, the condition for its existence isthat the function $f(t) e^{-\sigma t}$ should be absolutely integrable.
$\int_{-\infty}^{\infty}\left|f(t) e^{-\sigma t}\right| d t<\infty$
Proof: Let $f(t)$ be causal and an exponential order function then it always satisfies the following inequality
$|f(t)|=M e^{r t}$ for all $t>0$
Where M and α are real constants
$\int_{-\infty}^{\infty}\left|f(t) e^{-\sigma t}\right| d t=\int_{0}^{\infty} M e^{\alpha t} e^{-\sigma t} d t=\int_{0}^{\infty} M e^{-(\sigma-\alpha) t} d t$
$\int_{-\infty}^{\infty}\left|f(t) e^{-\sigma t}\right| d t=\left.\frac{M}{\sigma-\alpha} e^{-(\sigma-\alpha) t}\right|_{0} ^{\infty}=\frac{M}{\sigma-\alpha}$ if $\sigma>\alpha$ is finite value.thus Laplace Trnasform exists
$\alpha<\sigma<\infty$
Region of convergence (ROC)

Region of convergence (ROC):

Region of convergence (ROC) defines the region where Laplace Transform exists. The range of values of sfor which Laplace Transform converge is called as ROC .The taitable $s=$ is a complex number and
display the complex plane referred to as s - plane where real part of s along the X - axis and imaginary part of s along the Y - axis. The ROC is a shaded region on the pole - zero plot, Laplace transform existsfor values of \boldsymbol{s} in the shaded region.Type equation here.
Poles and zeros $\mathrm{X}(\mathrm{s})$
$X(s)=\frac{N(s)}{D(s)}$
$\mathrm{N}(\mathrm{s})$:Numarator polynomial in complex variable
s D(s) : denominator Polynomial in complex
variable s
$X(s)$ will be the rational function in sthen
$X(s)=\frac{N(s)}{D(s)}=\frac{a_{0} s^{m}+a_{1} s^{m-1}+a_{2} s^{m-2}+\ldots \ldots+a_{m}}{b_{0} s^{n}+b_{1} s^{n-1}+b_{2} s^{n-2}+\ldots \ldots .+b_{n}}$
a_{m} and b_{n} are real constants and m and n are positive integers.The $X(s)$ is called proper rational Function if $\boldsymbol{n}>m$ and an improper raional function if $n \leq m$.
$X(s)=\frac{a_{0}}{b_{0}} \frac{\left(s-z_{1}\right)\left(s-z_{2}\right)\left(s-z_{3}\right) \ldots \ldots \ldots \ldots \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right) \ldots \ldots \ldots \ldots \ldots\left(s-p_{n}\right)}$
z_{k} roots of $N(s)$ where $k=1,2,3 \ldots \ldots m$
p_{k} roots of $D(s)$ where $k=1,2,3 \ldots \ldots n$
Roots of of numerator polynomial are called zero of $X(s)$ because $X(s)=0$ for those values s in the same way roots of denominator polynomialt are called poles of $X(s)$ because $X(s)=\infty$ for those values of s. Therefore poles of $X(s)$ lie outside of ROC since $X(s)$ does not converge at poles. The zeros, onthe other hand may lie inside or outside of ROC. The poles and zeros of X(s) in finite s plane characterised the algebraic expression for $\mathrm{X}(\mathrm{s})$ to within scale factor. The representation of poles and zeros in the s plane is referred to as the pole-zero plots.

Properties of ROC:

A complete specification of Laplace Transform requires not only the algebraic expression for $\mathrm{X}(\mathrm{s})$ but also the associated ROC. Different signals have identical algebraic expression for $\mathrm{X}(\mathrm{s})$, so that their Laplace transform are distinguishable only by ROC. It has been explained some specific constraint on ROC for various class of signals.

Property 1: the ROC of $X(s)$ consists of strips parallel to $j \omega$ axis in the s plane.
The ROC of Laplace Transform of $x(t)$ consists of those values of s for which $x(t) e^{-\sigma t}$ is absolutely integrable.
$\int_{-\infty}^{\infty} x(t) e^{-\sigma t} d t<\infty$
This condition depends only or values
Property 2: For rational Laplace Transforms, the ROC does not contain any poles.
$\mathrm{X}(\mathrm{s})=\infty$ at poles, Laplace Transform does not converge at poles and thus the ROC cannot containvalues of s that are pole.
Property3: If $x(t)$ is a finite duration signal and is absolutely integrable then the ROC is the entire plane.
$x(t)=\left\{\begin{array}{c}\text { non zero } T_{1} \leq t \leq T_{2} \\ 0 \text { other wise }\end{array}\right.$
$x(t)$ is absolutely integrable $\int_{T_{1}}^{T_{2}}|x(t)|<\infty$
For s to be in the ROC, the requirement is $\int_{T_{1}}^{T_{2}}|x(t)| e^{-\sigma t}<\infty$
For $\sigma>0$, the Maximum value ofe $e^{-\sigma t}$ over interval on which $\mathrm{x}(\mathrm{t})$ is non zero is $e^{-\sigma T_{1}}$
$\int_{T_{1}}^{T_{2}}|x(t)| e^{-\sigma t}<e^{-\sigma T_{1}} \int_{T_{1}}^{T_{2}}|x(t)|$ bounded
For <0, the Minimum value of $e^{-\sigma t}$ over interval on which $\mathrm{x}(\mathrm{t})$ is non zero is $e^{-\sigma T_{n}}$

$$
\int_{T_{1}}^{T_{n}}|x(t)| e^{-\sigma t}<e^{-\sigma T_{n}} \int_{T_{1}}^{T_{2}}|x(t)| \text { bounded }
$$

$x(t) e^{-\sigma t}$ is absolutely integrable thus ROC includes entire s plane.

Property4: If $x(t)$ is right sided and if line $\operatorname{Re}\{s\}=\sigma_{0}$ is in the ROC then all values of s for whichRe $\left\{\left\{_{S}\right\}>\right.$ will also be in the ROC.
$x(t)=\left\{\begin{array}{c}0-\infty \leq t<T_{1} \\ \text { non zero } T_{1} \leq t \leq \infty\end{array}\right.$
$x(t)$ is right sided signal then For s to be in the ROC, the requirement is

$$
\int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{0} t} d t<\infty
$$

if $\sigma_{1}>\sigma_{0}, e^{-\sigma_{1} t}$ decays faster than $e^{-\sigma_{0} t}$ as t
$\int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{1} t} d t=\int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{0} t} e^{-\left(\sigma_{0}-\sigma_{1}\right) t} d t$
$\leq e^{-\left(\sigma_{0}-\sigma_{1}\right) t} \int_{T_{1}}^{\infty}|x(t)| e^{-\sigma_{0}} d t$
if $\sigma_{1}>\sigma_{0}, e^{-\sigma_{1} t}$ diverges faster than $e^{-\sigma_{0} t}$ as $\mathrm{t} \leftrightarrow-\infty$
$\mathrm{X}(\mathrm{t})$ cannot grow with out bound in -ve direction since $\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}<\mathrm{T}_{1}$
If a point s is in the ROC then all the points to the right of s that is all points larger real parts are inROC, For this reason in this case is commonly referred to as right half s-plane.
Property 5: if $x(t)$ is left sided and if line $\operatorname{Re}\{s\}=\sigma_{0}$ is in the ROC then the all values of s

Property 6: if $x(t)$ is two sided and if line $\operatorname{Re}\{s\}=\sigma_{0}$ is in the ROC then the ROC consists of a stripin the s- plane that includes line $\operatorname{Re}\left\{\varsigma_{0}\right\}=$
If $x(t)$ is infinite duration signal then ROC is of the form $\sigma_{1}<\operatorname{Re}\{s\}<\sigma_{2}$ where σ_{1} and σ_{2} are real parts of two poles of $\mathrm{X}(\mathrm{s})$, thus ROC is a vertical strip in the s plane between the vertical line $\operatorname{Re}\{s\}=$
σ_{1} and $\operatorname{Re}\{\mathrm{s}\}=\sigma_{2}$. all poles lies outside the ROC.
Property 7: if the Laplace $\mathrm{X}(\mathrm{s})$ of $\mathrm{x}(\mathrm{t})$ is rational then its ROC is bounded by poles or extended toinfinity . in addition, no poles of $\mathrm{X}(\mathrm{s})$ contained in the ROC.

Property 7 : if Laplace transform of $\mathrm{x}(\mathrm{t})$ is $\mathrm{X}(\mathrm{s})$ is rational.
If Laplace Transform $\mathrm{X}(\mathrm{s})$ contain more than one poles in the right side of S-plane, the ROC is theregion in the plane to the right of right most pole.

If Laplace Transform X(s) contain more than one pole in the left side of s-plane , the ROC is the regionin the plane to the left of left most pole.

Linearity Property

$$
f(t) \leftrightarrow F(s), f_{n}(t) \leftrightarrow F_{n}(s)
$$

Linear combination of signals

$$
\begin{aligned}
L\left\{a_{1} f_{1}(t)+\right. & \left.a_{2} f_{2}(t)+a_{3} f_{3}(t)+\ldots \ldots \ldots \ldots+a_{n} f_{n}(t)\right\} \\
& =a_{1} F_{1}(s)+a_{2} F_{2}(s)+a_{3} F_{3}(s) \ldots \ldots \ldots+a_{n} F_{n}(s)
\end{aligned}
$$

Where $a_{1}, a_{2} \ldots \ldots a_{n}$ are any arbitrary constantsProof

$$
\begin{aligned}
& L\left\{a_{1} f_{1}(t)+a_{2} f_{2}(t)+a_{3} f_{3}(t)+\ldots \ldots \ldots . . a_{n} f_{n}(t)\right\}=\int_{-\infty}^{\infty \infty \infty}\left\{a_{1} f_{1}(t)+a_{2} f_{2}(t)+\right. \\
& \left.a_{3} f_{3}(t)+\ldots \ldots \ldots \ldots+a_{n} f_{n}(t)\right\} e^{-s t} d t \\
& =\int_{-\infty}^{\infty} a_{1} f_{1}(t) e^{-s t} d t+\int_{-\infty}^{\infty} a_{2} f_{2}(t) e^{-s t} d t+\ldots \ldots+\int_{-\infty}^{\infty} a_{n} f_{n}(t) e^{-s t} d t \\
& a_{1} F_{1}(s)+a_{2} F_{2}(s)+a_{3} F_{3}(s) \ldots \ldots \ldots .+a_{n} F_{n}(s)
\end{aligned}
$$

Time Shifting Property

$$
\text { If signal } f(t)=\left\{\begin{array}{c}
\text { non zero for } t \geq 0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

$$
L\{f(t)\}=F(s)
$$

$$
L\left\{f\left(t-t_{0}\right)\right\}=e^{-s t_{0}} F(s)
$$

Proof
$L\left\{f\left(t-t_{0}\right)\right\}=\int_{0}^{\infty} f\left(t-t_{0}\right) e^{-s t} d t$
$t-t_{0}=\tau, \quad t=\tau+t_{0}, d t=d \tau, \quad$ when $t=0$,

$$
\tau=-t_{0}, \text { when } t=\infty, \tau=\infty
$$

$L\left\{f\left(t-t_{0}\right)\right\}=\int_{-t_{0}}^{\infty} f(\tau) e^{-s\left(\tau+t_{0}\right)} d \tau$
$=e^{-s t_{0}} \int_{-t_{0}}^{\infty} f(\tau) e^{-s \tau} d \tau$
$=e^{-s t_{0}}\left\{\int_{-t_{0}}^{-1} f(\tau) e^{-s \tau} d \tau+\int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau\right\}$
$L\left\{f\left(t-t_{0}\right)\right\}=e^{-s t_{0}}\left\{\int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau\right\}=e^{-s t_{0}} F(s)$

Frequency shifting Property

If signal $f(t)=\left\{\begin{array}{c}\text { non zero for } t \geq 0 \\ 0 \quad \text { otherwise }\end{array}\right.$
$\left.{ }_{\text {Prof }}^{L\left\{e^{-a t}\right.} f(t)\right\}=F(s+a)$
Proof
$L\left\{e^{-a t} f(t)\right\}=\int_{0}^{\infty} e^{-a t} f(t) e^{-s t} d t$
$=\int_{0}^{\infty} f(t) e^{-(s+a) t} d \mathrm{t}=\mathrm{F}(\mathrm{s}+\mathrm{a})$
$e^{-a t} \boldsymbol{f}(\boldsymbol{t}) \leftrightarrow F(s+a)$
Scaling Property
$f(t) \leftrightarrow F(s)$
$f(a t) \leftrightarrow \frac{1}{a} F\left(\frac{s}{a}\right)$
Proof
$L\{f(a t)\}=\int_{0}^{\infty} f(a t) e^{-s t} d t$
$a t=\tau, \quad t=\tau / a$
$\mathcal{L}\{f(a t)\}=\int_{0}^{\infty} f(\tau) e^{-\frac{s \tau}{a}} \frac{d \tau}{a}$
$\mathcal{L}\{f(a t)\}=\frac{1}{a} F\left(\frac{s}{a}\right)$
Time differentiation Property
If signal $f(t)=\left\{\begin{array}{cc}\text { non zero for } t \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& f(t) \leftrightarrow F(s) \\
& \frac{d}{d t} f(t) \text { is absouletely interable } \\
& \frac{d}{d t} f(t) \leftrightarrow s F(s)-f(0-) \\
& \mathcal{L}\left\{\frac{d}{d t} f(t)\right\}=\int_{0}^{\infty}\left\{\frac{d}{d t} f(t)\right\} e^{-s t} d t \\
& \left.=\left.f(t) e^{-s t}\right|_{0-} ^{\infty}+s \int_{0}^{\infty} f(t)\right\} e^{-s t} d t \\
& s F(s)-f(0-) \\
& \frac{d^{2} f(t)}{d t^{2}}=\frac{d y(t)}{d t} \\
& L\left\{\frac{d^{2} f(t)}{d t^{2}}\right\}=L\left\{\frac{d y(t)}{d t}\right\}=s Y(s)-y(0-)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}\left\{\frac{d^{n} f(t)}{d t^{n}}\right\}= & s^{n} F(s)-s^{n-1} f(0-)-s^{n-2} f^{\prime}(0-)- \\
& -f^{n-1}\left(0 _\right)
\end{aligned}
$$

For causal function, all initial conditions are zero
$\mathcal{L}\left\{\frac{d^{n} f(t)}{d t^{n}}\right\}=s^{n} F(s)$
Differentiation in s-Domain
$\mathcal{L}\{f(t)\}=F(s)$
$\mathcal{L}\left\{(-t)^{n} f(t)\right\}=\frac{d^{n} F(s)}{d s^{n}}$
Proof
$F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$
Differentiation with respect of s
$\frac{d F(s)}{d s}=\int_{0}^{\infty}\{-t f(t)\} e^{-s t} d t$
$\mathcal{L}\{-t f(t)\}=\frac{d F(s)}{d s}$
$2^{\text {nd }}$ derivative with respect s
$\frac{d^{2} F(s)}{d s^{2}}=\int_{0}^{\infty}\left\{t^{2} f(t)\right\} e^{-s t} d t$
$\mathcal{L}\left\{t^{2} f(t)\right\}=\frac{d^{2} F(s)}{d s^{2}}$
Similarly, nth derivative with respect s
$\left.\mathcal{L} O(-t)^{n} f(t)\right\}=\frac{d^{n} F(s)}{d s^{n}}$

Time integration Property

$\mathcal{L}\{f(t)\}=F(s)$
$\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}$ and $\mathcal{L}\left\{\int_{-\infty}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s}+\frac{\int_{-\infty}^{0} f(\tau) d \tau}{s}$
Proof
$\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\int_{0}^{\infty}\left\{\int_{0}^{t} f(\tau) d \tau\right\} e^{-s t} d t$
$=\left.\frac{-e^{-s t}}{s} \int_{0}^{t} f(\tau) d \tau\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} d t={ }^{\frac{F}{s}(s)}$ for causal signal
For non-causal signal
$\int_{-\infty}^{t} f(\tau) d \tau=\int_{-\infty}^{0-} f(\tau) d \tau+\int_{0+}^{t} f(\tau) d \tau$
$\mathcal{L}\left\{\int_{-\infty}^{t} f(\tau) d \tau\right\}=\mathcal{L}\left\{\int_{-\infty}^{0-} f(\tau) d \tau\right\}+\mathcal{L}\left\{\int_{0+}^{t} f(\tau) d \tau\right\}$
$=\frac{\int_{-\infty}^{0-} f(\tau) d \tau}{s}+\frac{F(s)}{s}$
Integration in S domain
$f(t) \leftrightarrow F(s)$
$\int_{s}^{\infty} F(u) d u \leftrightarrow \frac{f(t)}{t}$
Proof
$\int_{s}^{\infty} F(u) d u=\int_{s}^{\infty}\left\{\int_{0}^{\infty} f(t) e^{-u t} d t\right\} d u=$
$=\int_{0}^{\infty} f(t)\left\{\int_{s}^{\infty} e^{-u t} d u\right\} d t$
$=\left.\int_{0}^{\infty} f(t) \frac{e^{-u t}}{-t}\right|_{s} ^{\infty} d t$
$=\int_{0}^{\infty} \frac{f(t)}{t} e^{-s t} d t$
$=\mathcal{L}\left\{\frac{f(t)}{t}\right.$
Time Convolution
$f_{1}(t) \leftrightarrow F_{1}(s), f_{2}(t) \leftrightarrow F_{2}(s)$
$f_{1}(t) * f_{2}(t)=\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau$
$\mathcal{L}\left\{f_{1}(t) * f_{2}(t)\right\}=F_{1}(s) F_{2}(s)$
Proof
$\mathcal{L}\left\{f_{1}(t) * f_{2}(t)\right\}=\int_{0}^{\infty}\left[\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau\right] e^{-s t} d t$
$t-\tau=\lambda \Rightarrow t=\tau+\lambda$
$\mathcal{L}\left\{f_{1}(t) * f_{2}(t)\right\}=\int_{0}^{\infty} f_{1}(\tau) \int_{0}^{\infty} f_{2}(\lambda) e^{-s(\tau+\lambda)} d \lambda d \tau$
$=\int_{0}^{\infty} f_{1}(\tau) e^{-s \tau} d \tau \int_{0}^{\infty} f_{2}(\lambda) e^{-s \lambda} d \lambda$
$=F_{1}(s) F_{2}(s)$

Multiplication in time domain or convolution in frequency domain
$f_{1}(t) \leftrightarrow F_{1}(s), f_{2}(t) \leftrightarrow F_{2}(s)$
$\mathcal{L}\left\{f_{1}(t) f_{2}(t)\right\}=\frac{1}{2 \pi j}\left(F_{1}(s) * F_{2}(s)\right)$

Proof

$$
\begin{aligned}
& \mathcal{L}\left\{f_{1}(t) f_{2}(t)\right\}=\int_{0}^{\infty} f_{1}(t) f_{2}(t) e^{-s t} d t \\
& =\int_{0}^{\infty} f_{1}(t)\left[\frac{1}{2 \pi j} \int_{0}^{\infty} F_{2}(\lambda) e^{\lambda t} d \lambda\right] e^{-s t} d t \\
& =\frac{1}{2 \pi j} \int_{0}^{\infty} F_{2}(\lambda)\left[\int_{0}^{\infty} f_{1}(t) e^{(s-\lambda) t} d t\right] d \lambda \\
& =\frac{1}{2 \pi j} \int_{0}^{\infty} F_{2}(\lambda) F_{1}(s-\lambda) d \lambda \\
& =\frac{1}{2 \pi j}\left(F_{1}(s) * F_{2}(s)\right)
\end{aligned}
$$

Initial value theorem

The initial value theorem is used to calculate $f(0)$ from Laplace Transform of $F(s)$ without the need of inverse Laplace Transform.It state that $f(t)$ and it first derivative are Laplace transformable , then the initial value of $f(t)$ is given by
$f(0+)=\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty}[s F(s)]$
$\mathcal{L} \frac{d}{d t} f(t)=\int_{0}^{\infty} \frac{d}{d t} f(t) e^{-s t} d t$
$=\int_{0-\frac{d}{d t}}^{0+} f(t) e^{-s t} d t+\int_{0+}^{\infty} \frac{d}{d t} f(t) e^{-s t} d t$

The discontinuity in $f(t)$ at $t=0$, the derivative of $f(t)$ is an impulse function af amplitude equal in the value of discontinuity.
$\left.\frac{d}{d t} \boldsymbol{f}(\boldsymbol{t})\right|_{\boldsymbol{t}=0}=\{\mathrm{f}(0+)-\mathrm{f}(0-)\} \boldsymbol{\delta}(\boldsymbol{t})$
$\int_{0-}^{0+} \frac{d}{d t} f(t) e^{-s t} d t=\int_{0-}^{0+}[f(0+)-f(0-)] \delta(t) e^{-s t} d t=f(0+)-f(0-)$

$$
\mathcal{L} \frac{d}{d t} f(t)=s F(s)-f(0-)=f(0+)-f(0-)+\int_{0+\frac{d}{d t}}^{\infty} f(t) e^{-s t} d t
$$

$s F(s)=f(0+)+\int_{0+}^{\infty} \frac{d}{d t} f(t) e^{-s t} d t$
$\lim _{s \rightarrow \infty}[s F(s)]=f(0+)=\lim _{t \rightarrow 0} f(t)$

Final Value theorem
$\lim _{s \rightarrow \infty}[s F(s)]=f(\infty)$

Proof
$s F(s)=f(0+)+\int_{0+}^{\infty} \frac{d}{d t} f(t) e^{-s t} d t$
$\lim _{s \rightarrow 0}[s F(s)]=f(0+)+\int_{0+}^{\infty} \frac{d}{d t} f(t) d t$
$\lim _{s \rightarrow 0}[s F(s)]=f(0+)+f(\infty)-f(0+)=f(\infty)$

Inverse Laplace Transforms
$f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+\infty} F(s) e^{s t} d s$

Method of finding Inverse Laplace Transform

1. Residue Method
2. Partial fraction method
3. Residue Method:

The inverse formula can be expressed as a contour integral by the residue theorem
$f(t)=\frac{1}{j 2 \pi} \oint F(s) e^{s t} d s$ $=\sum_{i=1}^{n}$ Residue of $F(s) e^{s t}$ at pole s_{i} inside of closed contour
whereResidue $\left[s_{i}\right], i=1,2,3 \ldots \ldots$. aretheresidueof $F(s) e^{s t}$ andisaclsoedcurve
ILT given by $f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+\infty} F(s) e^{s t} d s$

It given by a line integral along a vertical line $\operatorname{Re}\{s\}$ in the region of existence of $F(s)$. in this integral the real σ is to be selected such that if ROC of $F(s)$ is $\operatorname{Re}\{s\}>\sigma_{1}$ then
$\sigma_{1}<\sigma<\infty$

Finding residues

If $\boldsymbol{F}(\boldsymbol{s}) \boldsymbol{e}^{s t}$ is a rational function of s it may be expressed as
$F(s) e^{s t}=\frac{\varphi(s)}{\left(s-s_{0}\right)^{n}}$

Where $\mathrm{F}(\mathrm{s}) e^{s t}$ has n poles at $\mathrm{s}=s_{0}$ and $\varphi(s)$ has no poles at $\mathrm{s}=s_{0}$ the residue of $\mathrm{F}(\mathrm{s}) e^{s t}$ at $s=s_{0}$ is given by
$\operatorname{Res}\left\{\mathrm{F}(\mathrm{s}) e^{s t}\right.$ at $\left.s=s_{0}\right\}==\frac{1}{(n-1)!}\left[\frac{d^{n-1} \varphi(s)}{d s^{n-1}}\right]_{s=s_{0}}$

If $\mathrm{n}=1$ function has only one first order pole

$$
\operatorname{Res}\left\{\mathrm{F}(\mathrm{~s}) e^{s t} \text { at } s=s_{0}\right\}=\varphi\left(s_{0}\right)
$$

Partial fraction Expansion Method

(a) $\mathrm{X}(\mathrm{s})$ is proper rational function

The Partial fraction expansion of $X(s)$ requires the following two conditions
(i) $X(s)$ must be proper rational function that is degree of denominator polynomial in s is greaterthan the degree of numerator polynomial in s.
$X(s)=\frac{N(s)}{D(s)}=\frac{a_{0} s^{m}+a_{1} s^{m-1}+a_{2} s^{m-2}+\ldots \ldots \ldots+a_{m-1} s+a_{m}}{b_{0} s^{n}+b_{1} s^{n-1}+b_{2} s^{n-2}+\ldots \ldots+b_{n-1} s+b_{n}} \quad n>m$
(ii) A denominator in factored form. The structure of expansion depends on the nature of the factorsin $\mathbf{Q}(\mathbf{s})$. the constants in the numerator of partial fraction expansion are called residues.

$$
X(s)=\frac{N(s)}{D(s)}=K \frac{\left(s-z_{1}\right)\left(s-z_{2}\right)\left(s-z_{3}\right) \ldots \ldots \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right) \ldots \ldots\left(s-p_{n}\right)}
$$

$$
z_{1}, z_{2}, z_{3}, \ldots \ldots z_{m} \text { are roots of } N(s) \text { and } p_{1}, p_{2}, p_{3}, \ldots \ldots p_{n} \text { are roots of } D(s)
$$

Case 1: If $\mathrm{D}(\mathrm{s})$ contain real and distinct roots.
$X(s)=\frac{N(s)}{\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right) \ldots \ldots \ldots\left(s-p_{n}\right)}$
$X(s)=\frac{K_{1}}{s-p_{1}}+\frac{K_{2}}{s-p_{2}}+\frac{K_{3}}{s-p_{3}}+\ldots \ldots \ldots+\frac{K_{n}}{s-p_{n}}$
The coefficient K_{i} can be obtained as
$K_{i}=\left.X(s)\left(s-p_{i}\right)\right|_{s=p_{i}}$
If $\mathrm{D}(\mathrm{s})$ contain some complex conjugate roots
$X(s)=\frac{K_{1}}{s-p_{1}}+\frac{K_{2}}{s-p_{2}}+\frac{K_{3}}{s-p_{3}}+\ldots \ldots \ldots+\frac{A_{1}}{s-C_{1}}+\frac{A_{2}}{s-C_{1}^{*}}+\frac{A_{3}}{s-C_{2}}+\frac{A_{4}}{s-C_{2}^{*}}$
$A_{2}=A_{1}^{*}, A_{4}=A_{3}^{*}$
C_{1}, C_{2} are complex conjugate roots
Case 2: if Denominator contain multiple roots in the form of $\left(s-p_{1}\right)^{m}$

$$
\begin{aligned}
& X(s)=\frac{K_{11}}{s-p_{1}}+\frac{K_{12}}{\left(s-p_{1}\right)^{2}}+\frac{K_{13}}{\left(s-p_{1}\right)^{3}}+\cdots \ldots \ldots+\frac{K_{1 r}}{\left(s-p_{1}\right)^{r}}+\ldots \ldots+\frac{K_{1 m}}{\left(s-p_{1}\right)^{m}} \\
& K_{1 r}=\frac{1}{(m-r)!} \frac{d^{m-r}}{d s^{m-r}}\left[\left(s-p_{1}\right) r X(s)\right]_{s=p_{1}} \\
& \quad \text { (b) If } X(s) \text { is improper rational function }
\end{aligned}
$$

Degree of $N(s)$ greater than or equal to degree of denominator
$D(s)$.Degree of $N(s)=m$, degree of $D(s)=n$
$X(s)=\frac{N(s)}{D(s)}=Q(s)+\frac{\boldsymbol{R}(s)}{D(s)} \quad m>n$
$Q(s)$ is quotient polynomial of order $m-n$
R remainder has dgree less than n

Inverse Laplace transform of $\frac{R(s)}{D(s)}$ (becomes proper rational function) and this can be evaluated bypartial fraction expansion method.

Inverse of Laplace transform of $Q(s)$ can be computed using differentiation
property.Application of Laplace Transform on Linear Systems
The transfer function of LTI continuous system completely described the behaviour of system with anytype of input. Consider LTI system with impulse response $\quad h(t)$. Let
$x(t), y(t)$ and $h(t)$ have Laplace transform $X(s), Y(s)$ and $H(s)$ respectively. The transfer function of a system is defined as the ratio of the Laplace transform of the output signal to the Laplace transformof input signal with all initial conditions are zero.
$H(s)=\frac{Y(s)}{X(s)}$
$y(t)=x(t) * h(t)$
$\mathcal{L}\{y(t)=\boldsymbol{L}\{x(t) * h(t)\}$
$Y(s)=X(s) H(s)$
$H(s)=\frac{Y(s)}{X(s)}$
$\mathcal{L}^{-1}\{\boldsymbol{H}(s)\}=\mathcal{L}^{-1}\left\{\frac{\boldsymbol{Y}(\boldsymbol{s})}{\boldsymbol{X}(\boldsymbol{s})}\right\}=\boldsymbol{h}(\boldsymbol{t})$
Causal LTI continuous time System described by an Nth order linear constant coefficient differentialequation
$a_{N} \frac{d^{W} y(t)}{d t^{N}}+a_{N-1} \frac{d^{N-1} y(t)}{d t^{N-1}} a_{N-2} \frac{d^{N-2} y(t)}{d t^{N-2}}+\ldots \ldots \ldots \ldots . .+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{M} \frac{d^{M} x(t)}{d t^{M}}+$
$b_{M-1} \frac{d^{M-1} x(t)}{d t^{M-1}} b_{M-2} \frac{d^{M-2} x(t)}{d t^{M-2}}+\ldots \ldots \ldots \ldots .+b_{1} \frac{d x(t)}{d t}+b_{0} x(t)$

Apply Laplace transform on both sides

$$
\begin{aligned}
& \begin{aligned}
a_{N} s^{N} Y(s)+ & a_{N-1} s^{N-1} Y(s)+a_{N-2} s^{N-2} Y(s)+\ldots \ldots \ldots \ldots+a_{1} s Y(s)+a_{0} Y(s) \\
& \quad b_{M} s^{M} X(s)+b_{M-1} s^{M-1} X(s)+b_{M-2} s^{M-2} X(s)+\ldots \ldots \ldots \ldots+b_{1} s X(s) \\
& \quad+b_{0} X(s)
\end{aligned} \\
& \begin{aligned}
& H(s)= \frac{Y(s)}{X(s)}= \\
& b_{M} s^{M}+b_{M-1} s^{M-1}+b_{M-2} s^{M-2}+\ldots \ldots \ldots \ldots .+b_{1} s+b_{0} \\
& a_{N} s^{N}+a_{N-1} s^{N-1}+a_{N-2} s^{N-2}+\ldots \ldots \ldots \ldots+a_{1} s+a_{0}
\end{aligned} \\
& H(s)=\frac{\sum_{k=0}^{M} a_{k} s^{k}}{\sum_{k=0}^{N} b_{k} s^{k}}
\end{aligned}
$$

Steady state frequency response of LTI system

$H(s)=\left.\frac{Y(s)}{X(s)}\right|_{s=j \omega}=H(\omega)=\frac{Y(j \omega)}{X(j \omega)}$
Magnitude response $=$

$$
\begin{aligned}
& |H(\omega)|=\left|\frac{Y(j \omega)}{X(j \omega)}\right| \text { Phase Response }= \\
& \angle H(\omega)=\tan ^{-1} \frac{Y(j \omega)}{X(j \omega)}
\end{aligned}
$$

Causality:

For causal system, $h(t)=0$ for $t<0$ and thus right sided. Therefore, the ROC associate with the transfer function of causal system is right half plane. However, if we know that the transfer function is rational, then it suffices to check that the ROC is the right half plane to the right of right most pole in s plane to conclude that thesystem is causal.

Stability

So far, we have seen that BIBO stability 0f continuous time LTI system is equivalent to its impulse response, being absolutely integrable, in which case its Fourier transform converge. Also the stability of an LTI differential system is equivalent to having all the poles of its characteristics equation having negative real part. for the Laplace Transform, the first stability condition translates to the following.

- An LTI system is stable if and only if the ROC of transfer function containsj axis.
- A causal system with proper rational function $\mathrm{H}(\mathrm{s})$ is stable if and only if all of its poles are in left halfof s-plane.

Advantages of Laplace Transforms

- The higher order differential equations can be easily solved by using simple algebraic equations.
- It transforms higher order differential equations with initial conditions in the time domain into simple algebraic equations in the s-domain. Since the initial conditions are automatically included in the solution.
- Total solution of Differential equation can be obtained by using inverse Laplace transform.
- It is a power full tool for analysing system properties in the form of transfer function.
- It can be used to analyse many classes of signals and systems which are not absolutely integrable.
- It provides solutions for many unstable systems such as impulse functions.
- Fourier transforms can be obtained from Laplace Transforms by ω substituting $s=j L i m i t a t i o n s$
- Laplace transforms does not converge for some type of signals whose amplitude grows faster than time.
- The ROC is needed to obtain to obtain inverse Laplace transforms.
- It very difficult to solve complex integrals directly in the process of inverse Laplace transform.

Z-TRANSFORMS

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful mathematical tool toconvert differential equations into algebraic equations.

The bilateral (two sided) z -transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ is given as.

$$
Z . T[x(n)]=X(Z)=\Sigma_{n=-\infty}^{\infty} x(n) z^{-n}
$$

The unilateral (one sided) z-transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ is given as

$$
Z . T[x(n)]=X(Z)=\Sigma_{n=0}^{\infty} x(n) z^{-n}
$$

Concept of Z-Transform and Inverse Z-Transform:

Z-transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ can be represented with $\mathrm{X}(\mathrm{Z})$, and it is defined as
Z-transform of a discrete time signal $\mathrm{x}(\mathrm{n})$ can be represented with $\mathrm{X}(\mathrm{Z})$, and it is defined as

If $Z=r e^{j \omega}$ then equation 1 becomes

$$
\begin{align*}
X\left(r e^{j \omega}\right) & =\Sigma_{n=-\infty}^{\infty} x(n)\left[r e^{j \omega}\right]^{-n} \\
& =\Sigma_{n=-\infty}^{\infty} x(n)\left[r^{-n}\right] e^{-j \omega n} \\
X\left(r e^{j \omega}\right) & =X(Z)=F \cdot T\left[x(n) r^{-n}\right] \ldots \ldots \tag{2}
\end{align*}
$$

The above equation represents the relation between Fourier transform and Z-transform.

$$
\left.X(Z)\right|_{z=e^{j \omega}}=F . T[x(n)] .
$$

Inverse Z-transform:

$$
\begin{align*}
X\left(r e^{j \omega}\right) & =F \cdot T\left[x(n) r^{-n}\right] \\
x(n) r^{-n} & =F \cdot T^{-1}\left[X\left(r e^{j \omega}\right]\right. \\
x(n) & =r^{n} F \cdot T^{-1}\left[X\left(r e^{j \omega}\right)\right] \\
& =r^{n} \frac{1}{2 \pi} \int X\left(r e^{j} \omega\right) e^{j \omega n} d \omega \\
& =\frac{1}{2 \pi} \int X\left(r e^{j} \omega\right)\left[r e^{j \omega}\right]^{n} d \omega \ldots . . \tag{3}
\end{align*}
$$

Substitute $r e^{j \omega}=z$

$$
d z=j r e^{j \omega} d \omega=j z d \omega
$$

$$
d \omega=\frac{1}{j} z^{-1} d z
$$

Substitute in equation 3.

$$
\begin{array}{r}
3 \rightarrow x(n)=\frac{1}{2 \pi} \int X(z) z^{n} \frac{1}{j} z^{-1} d z=\frac{1}{2 \pi j} \int X(z) z^{n-1} d z \\
X(Z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
x(n)=\frac{1}{2 \pi j} \int X(z) z^{n-1} d z
\end{array}
$$

Difference Between Laplace and Fourier Transforms:

Laplace vs Fourier Transforms:
Both Laplace transform and Fourier transform are integral transforms, which are most commonly employed as mathematical methods to solve mathematically modeled physical systems. The process is simple. A complex mathematical model is converted in to a simpler, solvable model using an integral transform. Once the simpler model is solved, the inverse integral transform is applied, which would provide the solution to the originalmodel.

For example, since most of the physical systems result in differential equations, they can be converted into algebraic equations or to lower degree easily solvable differential equations using an integral transform. Then solving the problem will become easier.

Region of convergence in Laplace transform:

With the z-transform, the s-plane represents a set of signals (complex exponentials). For any given LTI system, some of these signals may cause the output of the system to converge, while others cause the output to diverge ("blow up"). The set of signals that cause the system's output to converge lie in the region of convergence (ROC). This module will discuss how to find this region of convergence for any discretetime, LTI system.

The region of convergence, known as the ROC, is important to understand because it defines the region where the z -transform exists. The z -transform of a sequence is defined as

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

The ROC for a given $x[n]$, is defined as the range of z for which the z-transform converges. Sincethe z-transform is a power series, it converges when $x[n] z-n$ is absolutely summable.

must be satisfied for convergence.

Properties of the Region of Convergence:

The Region of Convergence has a number of properties that are dependent
on thecharacteristics of the signal, $x[n]$.

- The ROC cannot contain any poles. By definition a pole is a where $X(z)$ is infinite. Since $X(z)$ must be finite for all z for convergence, there cannot be a pole in the ROC.
- If $x[n]$ is a finite-duration sequence, then the ROC is the entire z-plane, except possibly $z=0$ or $|z|=\infty$. A finite-duration sequence is a sequence that is nonzero in a finite
- interval $n 1 \leq n \leq n 2$. As long as each value of $x[n]$ is finite then the sequence will be absolutely summable. When $n 2>0$ there will be a $z-1$ term and thus the ROC will not include $z=0$. When $n 1<0$ then the sum
will be infinite and thus the ROC will not include $|z|=\infty$. On the other hand, when $n 2 \leq 0$ then the ROC will include $z=0$, and when $n 1 \geq 0$ the ROC will include $|z|=\infty$. With these constraints, the only signal, then, whose ROC is the entire z-plane is $x[n]=c \delta[n]$.

Figure 4: A left-sided sequence.

Figure 5: The ROC of a left-sided sequence.

If $x[n]$ is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the interior and exterior by apole. A two-sided sequence is an sequence with infinite duration in the positive and negative directions. From the derivationof the above two properties, it follows that if $-\mathrm{r} 2<|z|<r 2$ converges, then both the positive-time and negativetime portions converge and thus $X(z)$ converges as well. Therefore the ROC of a two-sided sequence is of the form $r 2<|z|<r 2$.

Figure 6: A two-sided sequence.

Figure 7: The ROC of a two-sided sequence.

Examples

Example 1

Lets take

$$
x_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(\frac{1}{4}\right)^{n} u[n]
$$

The z-transform of $\left(\frac{1}{2}\right)^{n} u[n]$ is $\frac{z}{z-\frac{1}{2}}$ with an ROC at $|z|>\frac{1}{2}$.

Figure 8: The ROC of $\left(\frac{1}{2}\right)^{n} u[n]$

Example 2

Now take

$$
\begin{equation*}
x_{2}[n]=\left(\frac{-1}{4}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[(-n)-1] \tag{13}
\end{equation*}
$$

The z-transform and ROC of $\left(\frac{-1}{4}\right)^{n} u[n]$ was shown in the example above. The z-transorm of $\left(-\left(\frac{1}{2}\right)^{n}\right) u[(-n)-1]$ is $\frac{z}{z-\frac{1}{2}}$ with an ROC at $|z|>\frac{1}{2}$.

Figure 11: The ROC of $\left(-\left(\frac{1}{2}\right)^{n}\right) u[(-n)-1]$
Once again, by linearity,

$$
\begin{aligned}
X_{2}[z] & =\frac{z}{z+\frac{1}{4}}+\frac{z}{z-\frac{1}{2}} \\
& =\frac{z\left(2 z-\frac{1}{8}\right)}{\left(z+\frac{1}{4}\right)\left(z-\frac{1}{2}\right)}
\end{aligned}
$$

By observation it is again clear that there are two zeros, at 0 and $\frac{1}{16}$, and two poles, at $\frac{1}{2}$, and $\frac{-1}{4}$. in ths case though, the ROC is $|z|<\frac{1}{2}$.

Figure 12: The ROC of $x_{2}[n]=\left(\frac{-1}{4}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[(-n)-1]$.

Properties of Z- transforms:

The z-transform has a set of properties in parallel with that of the Fourier transform (and Laplace transform). The difference is that we need to pay special attentionto the ROCs. In the following, we always assume

$$
\mathcal{Z}[x[n]]=X(z) \quad R O C=R_{x}
$$

and

$$
\mathcal{Z}[y[n]]=Y(z) \quad R O C=R_{y}
$$

Linearity

$$
\mathcal{Z}[a x[n]+b y[n]]=a X(z)+b Y(z), \quad R O C \supseteq\left(R_{x} \cap R_{y}\right)
$$

- Time Shifting

$$
\mathcal{Z}\left[x\left[n-n_{0}\right]\right]=z^{-n_{0}} X(z), \quad R O C=R_{x}
$$

Proof:

$$
\mathcal{Z}\left[x\left[n-n_{0}\right]\right]=\sum_{n=-\infty}^{\infty} x\left[n-n_{0}\right] z^{-n}
$$

Define $\begin{array}{r}m=n-n_{0} \text {, we have } n=m+n_{0} \\ \text { and }\end{array}$

$$
\sum_{m=-\infty}^{\infty} x[m] z^{-m} z^{-n_{0}}=z^{-n_{0}} X(z)
$$

The new ROC is the same as the old one except the possible addition/deletion of theorigin or infinity as the shift may change the duration of the signal.

- Time Expansion (Scaling)

$$
\mathcal{Z}[x[n / k]]=X\left(z^{k}\right), \quad R O C=R_{x}^{1 / k}
$$

$$
x[n]
$$

The discrete signal cannot be continuously scaled in time as has to be $x[n]$ aninteger (for a non-inte $\frac{\text { for }}{2}$
$x[n / k]$ is zero).

$$
x[n / k] \triangleq \begin{cases}x[n / k] & \text { if } n \text { is a multiple of } k \\ 0 & \text { else }\end{cases}
$$

Therefore is defined as

Example: If ${ }^{x[n]}$ is ramp

n	1	2	3	4	5	6
$x[n]$	1	2	3	4	5	6

then the expanded version $x[n / 2]$ is

$\frac{n}{\underline{n}}$	1	2	3	4	5	6
$n / 2$	0.5	1	1.5	2	2.5	3
m		1		2		3
$x[n / 2]$	0	1	0	2	0	3

where \underline{m} is the integer part of ${ }^{n / k}$.
Proof: The z-transform of such an expanded signal is

$$
\mathcal{Z}[x[n / k]]=\sum_{n=-\infty}^{\infty} x[n / k] z^{-n}=\sum_{m=-\infty}^{\infty} x[m] z^{-k m}=X\left(z^{k}\right)
$$

Note that the change of the summation index from $\quad \underline{n}$ to \underline{m} has no effect as the termsskipped are all zeros.

- Convolution

$$
\mathcal{Z}[x[n] * y[n]]=X(z) Y(z), \quad R O C \supseteq\left(R_{x} \cap R_{y}\right)
$$

ROC $\quad R_{x} \quad R_{y}$ The ROC of the convolution could be larger than the intersection of and due to the possible pole-zero cancellation caused by the convolution.

- Time Difference

$$
\mathcal{Z}[x[n]-x[n-1]]=\left(1-z^{-1}\right) X(z), \quad R O C=R_{x}
$$

Proof:

$$
\mathcal{Z}[x[n]-x[n-1]]=X(z)-z^{-1} X(z)=\left(1-z^{-1}\right) X(z)=\frac{z-1}{z} X(z)
$$

Note that due to the additional zero $\underline{z=1}$ and pole $\underline{z=0}$, the resulting ROC is R_{x}

$$
\underline{z=0}
$$

thesame as except the possible deletion of caused by the added pole and/or
addition of $z=1$ caused by the added zero which may cancel an existing pole.

- Time Accumulation

$$
\mathcal{Z}\left[\sum_{k=-\infty}^{n} x[k]\right]=\frac{1}{1-z^{-1}} X(z), \quad R O C \supseteq\left[R_{x} \cap(|z|>1)\right]
$$

Proof: The accumulation of ${ }^{x[n]}$ can be written as its convolution with ${ }^{u[n]}$:

$$
u[n] * x[n]=\sum_{k=-\infty}^{\infty} u[n-k] x[k]=\sum_{k=-\infty}^{n} x[k]
$$

Applying the convolution property, we get

$$
\mathcal{Z}\left[\sum_{k=-\infty}^{n} x[k]\right]=\mathcal{Z}[u[n] * x[n]]=\frac{1}{1-z^{-1}} X(z)
$$

$$
\mathcal{Z}[u[n]]=1 /\left(1-z^{-1}\right)
$$

as

- Time Reversal

$$
\mathcal{Z}[x[-n]]=X(1 / z) \quad R O C=1 / R_{x}
$$

Proof:

$$
\mathcal{Z}[x[-n]]=\sum_{n=-\infty}^{\infty} x[-n] z^{-n}=\sum_{m=-\infty}^{\infty} x[m]\left(\frac{1}{z}\right)^{-m}=X(1 / z)
$$

$$
m u=-u
$$

where

- Scaling in Z-domain

$$
\mathcal{Z}\left[a^{n} x[n]\right]=X\left(\frac{z}{a}\right), \quad R O C=|a| R_{x}
$$

Proof:

$$
\mathcal{Z}\left[a^{n} x[n]\right]=\sum_{n=-\infty}^{\infty} x[n]\left(\frac{z}{a}\right)^{-n}=X\left(\frac{z}{a}\right)
$$

In particular, if $a=e^{j \omega_{0}}$, the above becomes

$$
\mathcal{Z}\left[e^{j n \omega_{0}} x[n]\right]=X\left(e^{-j \omega_{0}} z\right) \quad R O C=R_{x}
$$

The multiplication by $\frac{e^{-j \omega_{0}}}{}$ to \underline{z} corresponds to a rotation by angle ω_{0} in the $z-$ plane, i.e., a frequency shift by . The rotation is either clockwise () or

$$
\omega_{0}<0
$$

counter clockwise () corresponding to, respectively, either a left-shift or a right shift in frequency domain. The property is essentially the same as the frequencyshifting property of discrete Fourier transform.

Conjugation

$$
\mathcal{Z}\left[x^{*}[n]\right]=X^{*}\left(z^{*}\right), \quad R O C=R_{x}
$$

$$
X^{*}(z)=\left[\sum_{n=-\infty}^{\infty} x[n] z^{-n}\right]^{*}=\sum_{n=-\infty}^{\infty} x^{*}[n]\left(z^{*}\right)^{-n}
$$

Replacing \underline{z} by z^{*}, we get the desired result.

- Differentiation in z-Domain

$$
\mathcal{Z}[n x[n]]=-z \frac{d}{d z} X(z), \quad R O C=R_{x}
$$

Proof:

$$
\frac{d}{d z} X(z)=\sum_{n=-\infty}^{\infty} x[n] \frac{d}{d z}\left(z^{-n}\right)=\sum_{n=-\infty}^{\infty}(-n) x[n] z^{-n-1}=\frac{-1}{z} \sum_{n=-\infty}^{\infty} n x[n] z^{-n}
$$

i.e.,

$$
\mathcal{Z}[n x[n]]=-z \frac{d}{d z} X(z)
$$

Example: Taking derivative with respect to of the right side of

$$
\mathcal{Z}\left[a^{n} u[n]\right]=\frac{1}{1-a z^{-1}} \quad|z|>|a|
$$

we get

$$
\frac{d}{d z}\left[\frac{1}{1-a z^{-1}}\right]=\frac{-a z^{-2}}{\left(1-a z^{-1}\right)^{2}}
$$

Due to the property of differentiation in z-domain, we have

$$
\mathcal{Z}\left[n a^{n} u[n]\right]=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} \quad|z|>|a|
$$

Note that for a different ROC $\quad|z|<|a|$, we have

$$
\mathcal{Z}\left[-n a^{n} u[-n-1]\right]=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} \quad|z|<|a|
$$

UNIT - 5

SAMPLING THEOREM

Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling - Aliasing, Introduction to Band Pass Sampling. Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions, Energy Density Spectrum, Parseval's Theorem, Power Density Spectrum, Relation between Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by filtering.

Graphical and analytical proof for Band Limited Signals:

Sampling thoerem: A continuous time signal can be represented in its samples and can be recovered back when sampling frequency f_{s} is greater than or equal to the twice the highest frequency component of message signal. i. e.

$$
f s \geq 2 f m
$$

Proof: Consider a continuous time signal $x(t)$. The spectrum of $x(t)$ is a band limited to $f_{m} H z$ i.e. the spectrum of $\mathrm{x}(\mathrm{t})$ is zero for $|\omega|>\omega_{\mathrm{m}}$.Sampling of input signal $\mathrm{x}(\mathrm{t})$ can be obtained by multiplying $\mathrm{x}(\mathrm{t})$ with an impulse train $\delta(\mathrm{t})$ of period T_{s}. The output of multiplier is a discrete signal called

Here, you can observe that the sampled signal takes the period of impulse. The process of sampling canbe explained by the following mathematical expression:

Sampled signal $y(t)=x(t) . \delta(t)$

The trigonometric Fourier series representation of $\delta(\mathrm{t})$ is given by

$$
\begin{equation*}
\delta(t)=a_{0}+\Sigma_{n=1}^{\infty}\left(a_{n} \cos n \omega_{s} t+b_{n} \sin n \omega_{s} t\right) \tag{2}
\end{equation*}
$$

Where $\quad a_{0}=\frac{1}{T_{s}} \int_{\frac{-T}{2}}^{\frac{T}{2}} \delta(t) d t=\frac{1}{T_{s}} \delta(0)=\frac{1}{T_{s}}$

$$
\begin{aligned}
& a_{n}=\frac{2}{T_{s}} \int_{\frac{-T}{2}}^{\frac{T}{2}} \delta(t) \cos n \omega_{s} d t=\frac{2}{T_{2}} \delta(0) \cos n \omega_{s} 0=\frac{2}{T} \\
& b_{n}=\frac{2}{T_{s}} \int_{\frac{-T}{2}}^{\frac{T}{2}} \delta(t) \sin n \omega_{s} t d t=\frac{2}{T_{s}} \delta(0) \sin n \omega_{s} 0=0
\end{aligned}
$$

Substitute above values in equation 2.

$$
\therefore \delta(t)=\frac{1}{T_{s}}+\Sigma_{n=1}^{\infty}\left(\frac{2}{T_{s}} \cos n \omega_{s} t+0\right)
$$

Substitute $\bar{\delta}(\mathrm{t})$ in equation 1.

$$
\begin{aligned}
\rightarrow y(t) & =x(t) \cdot \delta(t) \\
& =x(t)\left[\frac{1}{T_{s}}+\Sigma_{n=1}^{\infty}\left(\frac{2}{T_{s}} \cos n \omega_{s} t\right)\right] \\
& =\frac{1}{T_{s}}\left[x(t)+2 \Sigma_{n=1}^{\infty}\left(\cos n \omega_{s} t\right) x(t)\right] \\
y(t) & =\frac{1}{T_{s}}\left[x(t)+2 \cos \omega_{s} t . x(t)+2 \cos 2 \omega_{s} t . x(t)+2 \cos 3 \omega_{s} t . x(t) \ldots \ldots\right]
\end{aligned}
$$

Take Fourier transform on both sides.

$$
\begin{aligned}
& Y(\omega)=\frac{1}{T_{s}}\left[X(\omega)+X\left(\omega-\omega_{s}\right)+X\left(\omega+\omega_{s}\right)+X\left(\omega-2 \omega_{s}\right)+X\left(\omega+2 \omega_{s}\right)+\ldots\right] \\
& \therefore Y(\omega)=\frac{1}{T_{s}} \Sigma_{n=-\infty}^{\infty} X\left(\omega-n \omega_{s}\right) \quad \text { where } n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

To reconstruct $\mathrm{x}(\mathrm{t})$, you must recover input signal spectrum $\mathrm{X}(\omega)$ from sampled signal spectrum $Y(\omega)$,which is possible when there is no overlapping between the cycles of $Y(\omega)$.
There are three types of sampling techniques:

- Impulse sampling.
- Natural sampling.
- Flat Top
sampling.Impulse

Sampling

Impulse sampling can be performed by multiplying input signal $\mathrm{x}(\mathrm{t})$ with impulse train

$$
\Sigma_{n=-\infty}^{\infty} \delta(t-n T)
$$

of period ' T '. Here, the amplitude of impulse changes with respect to amplitudeof input signal $x(t)$. The output of sampler is given by

$$
\begin{aligned}
y(t) & =x(t) \times \text { impulse train } \\
& =x(t) \times \Sigma_{n=-\infty}^{\infty} \delta(t-n T)
\end{aligned}
$$

$$
y(t)=y_{\delta}(t)=\Sigma_{n=-\infty}^{\infty} x(n t) \delta(t-n T) \ldots \ldots 1
$$

get the spectrum of sampled signal, consider Fourier transform of equation 1 on both sides

$$
Y(\omega)=\frac{1}{T} \Sigma_{n=-\infty}^{\infty} X\left(\omega-n \omega_{s}\right)
$$

This is called ideal sampling or impulse sampling. You cannot use this practically because pulse widthcannot be zero and the generation of impulse train is not possible practically. Natural Sampling
Natural sampling is similar to impulse sampling, except the impulse train is replaced by pulse train ofperiod T. i.e. you multiply input signal $x(t)$ to pulse train

Substitute $p(t)$ in equation 1

$$
\begin{aligned}
y(t) & =x(t) \times p(t) \\
& =x(t) \times \frac{1}{T} \Sigma_{n=-\infty}^{\infty} P\left(n \omega_{s}\right) e^{j n \omega_{s} t} \\
y(t) & =\frac{1}{T} \Sigma_{n=-\infty}^{\infty} P\left(n \omega_{s}\right) x(t) e^{j n \omega_{s} t}
\end{aligned}
$$

To get the spectrum of sampled signal, consider the Fourier transform on both sides.

$$
\begin{aligned}
F . T[y(t)] & =F . T\left[\frac{1}{T} \Sigma_{n=-\infty}^{\infty} P\left(n \omega_{s}\right) x(t) e^{j n \omega_{s} t}\right] \\
& =\frac{1}{T} \Sigma_{n=-\infty}^{\infty} P\left(n \omega_{s}\right) F . T\left[x(t) e^{j n \omega_{s} t}\right]
\end{aligned}
$$

According to frequency shifting property

$$
\begin{aligned}
& F . T\left[x(t) e^{j n \omega_{s} t}\right]=X\left[\omega-n \omega_{s}\right] \\
& \therefore Y[\omega]=\frac{1}{T} \sum_{n=-\infty}^{\infty} P\left(n \omega_{s}\right) X\left[\omega-n \omega_{s}\right]
\end{aligned}
$$

Flat Top Sampling

During transmission, noise is introduced at top of the transmission pulse which can be easily removed if the pulse is in the form of flat top. Here, the top of the samples are flat i.e. they have constant amplitude. Hence, it is called as flat top sampling or practical sampling. Flat top sampling makes use ofsample and hold circuit.

Theoretically, the sampled signal can be obtained by convolution of rectangular pulse $\mathrm{p}(\mathrm{t})$ with ideallysampled signal say $\mathrm{y}_{\delta}(\mathrm{t})$ as shown in the diagram:
i.e. $y(t)=p(t) \times y_{\delta}(t) \ldots \ldots(1)$

To get the sampled spectrum, consider Fourier transform on both sides for equation 1

$$
Y[\omega]=F . T\left[P(t) \times y_{\delta}(t)\right]
$$

By the knowledge of convolution property,

$$
Y[\omega]=P(\omega) Y_{\delta}(\omega)
$$

Here $P(\omega)=T S a\left(\frac{\omega T}{2}\right)=2 \sin \omega T / \omega$

Nyquist Rate

It is the minimum sampling rate at which signal can be converted into samples and can be recoveredback without distortion.

Nyquist rate $\mathrm{f}_{\mathrm{N}}=2 \mathrm{f}_{\mathrm{m}} \mathrm{hz}$
Nyquist interval $=1 / f_{N}=1 / 2 f m$ seconds.

Reconstruction of signal from its samples:

Reconstruction

Assume that the Nyquist requirement $\omega 0>2 \omega \mathrm{~m}$ is satisfied. We consider two reconstruction schemes:

- ideal reconstruction (with ideal bandlimited interpolation),
- reconstruction with zero-order hold.

Ideal Reconstruction: Shannon interpolation formula

$$
X_{p}(t)=\ldots+\frac{1}{T} X^{\mathrm{F}}\left(\omega+\omega_{0}\right)+\frac{1}{T} X^{\mathrm{F}}(\omega)+\frac{1}{T} X^{\mathrm{F}}\left(\omega-\omega_{0}\right)+\ldots
$$

Our ideal reconstruction filter has the frequency response:

$$
H^{\mathrm{F}}(\omega)=T \mathbf{1}_{(-\pi / T, \pi / T)}(\omega)
$$

and, consequently, the impulse

$$
h(t)=\operatorname{sinc}\left(\frac{t}{T}\right)
$$

responseNow, the reconstructed
signal is

$$
x(t)=\underbrace{x_{p}(t)}_{\text {impulse-sampled signal }} \star h(t)=\sum_{n=-\infty}^{+\infty} x(n T) \underbrace{\delta(t-n T) \star h(t)}_{h(t-n T), \sec (3)}=\sum_{n=-\infty}^{+\infty} x(n T) \operatorname{sinc}\left(\frac{t-n T}{T}\right)
$$

which is the Shannon interpolation (reconstruction) formula. The actual reconstruction system mixescontinuous and discrete time.

The reconstructed signal $\mathrm{xr}(\mathrm{t})$ is a train of sinc pulses scaled by the samples $\mathrm{x}[\mathrm{n}]$. • This system is difficult to implement because each sinc pulse extends over a long (theoretically infinite) time interval.

A general reconstruction filter
For the development of the theory, it is handy to consider the impulse-sampled signal $\mathrm{xP}(\mathrm{t})$ and its CTFT.

Figure : Reconstruction in the frequency domain is lowpass filtering
Here, the reconstructed signal is $x_{r}(t)$, with CTFT

$$
X_{r}^{\mathrm{F}}(\omega)=H_{\mathrm{LP}}^{\mathrm{F}}(\omega) X_{p}^{\mathrm{F}}(\omega) \stackrel{\text { sampling th. }}{=} H_{\mathrm{LP}}^{\mathrm{F}}(\omega) \frac{1}{T} \sum_{k=-\infty}^{+\infty} X^{\mathrm{F}}(\omega-\underbrace{\frac{2 \pi k}{T}}_{k \omega_{0}}) .
$$

Effect of under sampling - Aliasing

Possibility of sampled frequency spectrum with different conditions is given by the followingdiagrams:

Aliasing Effect
The overlapped region in case of under sampling represents aliasing effect, which can be removed by

- considering $\mathrm{f}_{\mathrm{s}}>2 \mathrm{f}_{\mathrm{m}}$
- By using anti aliasing filters.

Samplings of Band Pass Signals

In case of band pass signals, the spectrum of band pass signal $X[\omega]=0$ for the frequencies outside the range $f_{1} \leq f \leq f_{2}$. The frequency f_{1} is always greater than zero. Plus, there is no aliasing effect when $f_{s}>2 f_{2}$. But it has two disadvantages:

- The sampling rate is large in proportion with f_{2}. This has practical limitations.
- The sampled signal spectrum has spectral gaps.

To overcome this, the band pass theorem states that the input signal $x(t)$ can be converted into itssamples and can be recovered back without distortion when sampling frequency f_{s} $<2 \mathrm{f}_{2}$.
Also
$f_{s}=\frac{1}{T}=\frac{2 f_{2}}{m}$

Where m is the largest integer $<\frac{f_{2}}{B}$
and B is the bandwidth of the signal. If $f_{2}=K B$, then

$$
f_{s}=\frac{1}{T}=\frac{2 K B}{m}
$$

For band pass signals of bandwidth $2 f_{m}$ and the minimum sampling rate $f_{s}=2 B=4 f_{m}$, the spectrum of sampled signal is given by $Y[\omega]=\frac{1}{T} \Sigma_{n=-\infty}^{\infty} X[\omega-2 n B]$

$$
\Sigma_{n=-\infty}^{\infty} P(t-n T)
$$

The output of sampler is

$$
\begin{align*}
y(t) & =x(t) \times \text { pulse train } \\
& =x(t) \times p(t) \\
& =x(t) \times \Sigma_{n=-\infty}^{\infty} P(t-n T) \ldots \ldots \tag{1}
\end{align*}
$$

The exponential Fourier series representation of $p(t)$ can be given as

$$
\begin{aligned}
p(t) & =\Sigma_{n=-\infty}^{\infty} F_{n} e^{j n \omega_{s} t} \cdots \\
& =\Sigma_{n=-\infty}^{\infty} F_{n} e^{j 2 \pi n f_{s} t}
\end{aligned}
$$

Where $\quad F_{n}=\frac{1}{T} \int_{\frac{-T}{2}}^{\frac{T}{2}} p(t) e^{-j n \omega_{s} t} d t$

$$
=\frac{1}{T P}\left(n \omega_{s}\right)
$$

Substitute F_{n} value in equation 2

$$
\begin{aligned}
\therefore p(t) & =\Sigma_{n=-\infty}^{\infty} \frac{1}{T} P\left(n \omega_{s}\right) e^{j n \omega_{s} t} \\
& =\frac{1}{T} \Sigma_{n=-\infty}^{\infty} P\left(n \omega_{s}\right) e^{j n \omega_{s} t}
\end{aligned}
$$

CorrelationCross Correlation and Auto Correlation of

Functions:

Correlation

Correlation is a measure of similarity between two signals. The general formula for correlation is

$$
\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t-\tau) d t
$$

There are two types of correlation:

- Auto correlation
- Cross correlation

Auto Correlation Function

It is defined as correlation of a signal with itself. Auto correlation function is a measure of similaritybetween a signal \& its time delayed version. It is represented with $\mathrm{R}(\tau)$.
Consider a signals $x(t)$. The auto correlation function of $x(t)$ with its time delayed version is given by

$$
\begin{aligned}
R_{11}(\tau)=R(\tau) & =\int_{-\infty}^{\infty} x(t) x(t-\tau) d t \\
& \left.=\int_{-\infty}^{\infty} x(t) x(t+\tau) d t \quad \text { ve shift }\right]
\end{aligned}
$$

Where $\tau=$ searching or scanning or delay parameter.
If the signal is complex then auto correlation function is given by

$$
\begin{aligned}
\begin{aligned}
& R_{11}(\tau)=R(\tau)=\int_{-\infty}^{\infty} x(t) x *(t-\tau) d t \\
& \text { [+ve shift] } \\
&=\int_{-\infty}^{\infty} x(t+\tau) x *(t) d t \\
& \text { Cross Correlation Function }
\end{aligned}
\end{aligned}
$$

Cross correlation is the measure of similarity between two different signals.
Consider two signals $\mathrm{x}_{1}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})$. The cross correlation of these two signals $R 12(\tau) \mathrm{R} 12(\tau)$ is givenby

$$
\begin{aligned}
R_{12}(\tau) & =\int_{-\infty}^{\infty} x_{1}(t) x_{2}(t-\tau) d t \quad[+\mathrm{ve} \text { shift }] \\
& =\int_{-\infty}^{\infty} x_{1}(t+\tau) x_{2}(t) d t \quad[\text {-ve shift }]
\end{aligned}
$$

i signals are complex then

$$
\begin{array}{rlr}
R_{12}(\tau) & =\int_{-\infty}^{\infty} x_{1}(t) x_{2}^{*}(t-\tau) d t & \text { [+ve shift] } \\
& =\int_{-\infty}^{\infty} x_{1}(t+\tau) x_{2}^{*}(t) d t & \text { [-ve shift] } \\
\begin{array}{rlr}
R_{21}(\tau) & =\int_{-\infty}^{\infty} x_{2}(t) x_{1}^{*}(t-\tau) d t & \text { [+ve shift] } \\
& =\int_{-\infty}^{\infty} x_{2}(t+\tau) x_{1}^{*}(t) d t & \text { [-ve shift] }
\end{array}
\end{array}
$$

Properties of Correlation Functions:

- Auto correlation exhibits conjugate symmetry i.e. $\mathrm{R}(\tau)=\mathrm{R}^{*}(-\tau)$

Proof: The autocorrelation of an energy signal $x(t)$ is given by

$$
R(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t
$$

Taking the complex conjugate, we have

$$
\begin{array}{ll}
& R^{*}(\tau)=\int_{-\infty}^{\infty} x^{*}(t) x(t-\tau) d t \\
\therefore & R^{*}(-\tau)=\int_{-\infty}^{\infty} x^{*}(t) x(t+\tau) d t=R(\tau) \\
\therefore & R(\tau)=R^{*}(-\tau)
\end{array}
$$

- Auto correlation function of energy signal at origin i.e. at $\tau=0$ is equal to total energy of that signal, which is given as:
$\mathrm{R}(0)=\mathrm{E}=\int_{-\infty}^{\infty}|x(t)|^{2} d t$
Proof: We have

$$
R(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t
$$

Putting $\tau=0$ gives

$$
R(0)=\int_{-\infty}^{\infty} x(t) x^{*}(t) d t=\int_{-\infty}^{\infty}|x(t)|^{2} d t=E
$$

- Auto correlation function is maximum at $\tau=0$ i.e $|\mathrm{R}(\tau)| \leq \mathrm{R}(0) \forall \tau$

Proof: Consider the functions $x(t)$ and $x(t+\tau) \cdot[x(t) \pm x(t+\tau)]^{2}$ is always greater than or equal to zero since it is squared, i.e.

$$
\begin{aligned}
& x^{2}(t)+x^{2}(t+\tau) \pm 2 x(t) x(t+\tau) \geq 0 \\
& x^{2}(t)+x^{2}(t+\tau) \geq \pm 2 x(t) x(t+\tau)
\end{aligned}
$$

Integrating both the sides, we get

$$
\begin{array}{lc}
& \int_{-\infty}^{-}|x(t)|^{2} d t+\int_{-\infty}^{\infty}|x(t+\tau)|^{2} d t \geq 2 \int_{-\infty}^{\infty} x(t) x(t+\tau) d t \\
\therefore & E+E \geq 2 R(\tau) \quad[\text { If } x(t) \text { is real valued function] } \\
\therefore & E \geq R(\tau) \\
\text { or } & R(0) \geq|R(\tau)| \quad \text { (Since } R(0)=E)
\end{array}
$$

- Auto correlation function and energy spectral densities are Fourier transform pairs. i.e.
$F . T[R(\tau)]=S_{x x}(\omega)$
$S_{\mathrm{Xx}}(\omega)=\int R(\tau) e^{-j \omega \tau} d \tau$ where $-\infty<\tau<\infty$
- $R(\tau)=x(\tau) * x(-\tau)$

Properties of Cross Correlation Function

- Auto correlation exhibits conjugate symmetry i.e. $R_{12}(\tau)=R^{*}{ }_{21}(-\tau)$.
- Cross correlation is not commutative like convolution i.e.

$$
R_{12}(\tau) \neq R_{21}(-\tau)
$$

- If $\mathrm{R}_{12}(0)=0$ means, if $\int x_{1}(t) x^{*} 2(t) d t=0$ over interval $(-\infty, \infty)$, then the two signals are said to beorthogonal.
- Cross correlation function corresponds to the multiplication of spectrums of one signal to thecomplex conjugate of spectrum of another signal. i.e.

$$
R_{12}(\tau) \longleftrightarrow X_{1}(\omega) X^{*} 2(\omega)
$$

This also called as correlation theorem.

Energy Density Spectrum:

Energy spectral density describes how the energy of a signal or a time series is distributed withfrequency. Here, the term energy is used in the generalized sense of signal processing; Energy density spectrum can be calculated using the formula:

$$
E=\int_{-\infty}^{\infty}|x(f)|^{2} d f
$$

Properties of ESD: The following are the properties of ESD.

1. The total area under the energy density spectrum is equal to the total energy of the signal.
i.e.

$$
E=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(\omega) d \omega=\int_{-\infty}^{\infty} \psi(f) d f
$$

2. If $x(t)$ is the input to an LTI system with impulse response $h(t)$, then the input and output ESD functions are related as:
or

$$
\begin{aligned}
& \psi_{y}(\omega)=|H(\omega)|^{2} \psi_{x}(\omega) \\
& \psi_{y}(f)=|H(f)|^{2} \psi_{x}(f)
\end{aligned}
$$

3. The autocorrelation function $R(\tau)$ and ESD $\psi(\omega)$ form a Fourier transform pair, i.e.
or

$$
\begin{aligned}
& R(\tau) \longleftrightarrow \psi(\omega) \\
& R(\tau) \longleftrightarrow \psi(f)
\end{aligned}
$$

Parseval's Theorem:

Parseval's theorem for energy signals (Rayleigh's energy theorem) Parseval's theorem defines the energy of a signal in terms of its Fourier transform. Using Parseval's theorem, the energy of a signal $x(t)$ can be evaluated directly from its frequency spectrum $X(\omega)$ without the knowledge of its time domain version, i.e. $x(t)$.
or

$$
\begin{aligned}
& E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega \\
& E=\int_{-\infty}^{\infty}|X(f)|^{2} d f
\end{aligned}
$$

Power Density Spectrum

The above definition of energy spectral density is suitable for transients (pulse-like signals) whose energy is concentrated around one time window; then the Fourier transforms of the signals generally exist. For continuous signals over all time, such as stationary processes, one must rather definethe power spectral density (PSD); this describes how power of a signal or time series is distributed over frequency, as in the simple example given previously. Here, power can be the actual physical power, or more often, for convenience with abstract signals, is simply identified with the squared value of the signal.

Power density spectrum can be calculated by using the formula:

$$
P=\Sigma_{n=-\infty}^{\infty}\left|C_{n}\right|^{2}
$$

- The spectrum of a real valued process (or even a complex process using the above definition) isreal and an even function of frequency:

$$
S_{x x}(-\omega)=S_{x x}(\omega)
$$

- If the process is continuous and purely indeterministic, the autocovariance function can bereconstructed by using the Inverse Fourier transform
- The PSD can be used to compute the variance (net power) of a process by integrating overfrequency:

$$
\operatorname{Var}\left(X_{n}\right)=\frac{1}{\pi} \int_{0}^{\infty} S_{x x}(\omega) d \omega
$$

Proof: Consider a function $x(t)$. We know that

$$
|x(t)|^{2}=x(t) x^{*}(t)
$$

where $x^{*}(t)$ is the conjugate of $x(t)$.
The average power of $x(t)$ for one cycle is:

$$
P=\frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) x^{*}(t) d t
$$

But, we have the exponential Fourier series,

$$
\begin{aligned}
& x(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{\text {jnat }} \\
\therefore & P=\frac{1}{T} \int_{-T / 2}^{T / 2} \sum_{n=-\infty}^{\infty} C_{n} e^{j n \omega t} x^{*}(t) d t
\end{aligned}
$$

Interchanging the order of summation and integration, we get

$$
\begin{aligned}
P & =\sum_{n=-\infty}^{\infty} C_{n} \frac{1}{T} \int_{-\pi / 2}^{T / 2} x^{*}(t) e^{j n \omega 1} d t \\
& =\sum_{n=-\infty}^{\infty} C_{n} C_{n}^{*}=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \\
\therefore \quad P & =\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2}
\end{aligned}
$$

This is called Parseval's power theorem. It states that the power of a signal is equal to the sum of square of the magnitudes of various harmonics present in the discrete spectrum.

Table 1 Comparision of ESD and PSD

S.No.	ESD
1. It gives the distribution of energy of a signal in	It gives the distribution of power of a signal in frequency domain.

2. It is given by $\psi(\omega)=|X(\omega)|^{2}$
3. The total energy is given by

$$
E=\frac{1}{2 \pi} \int_{-\infty}^{-} \psi(\omega) d \omega=\int_{-}^{-} \psi(f) d f
$$

4. The autocorrelation for an energy signal and its ESD form a Fourier transform pair.

$$
R(\tau) \longleftrightarrow \psi(\omega) \text { or } R(\tau) \longleftrightarrow \psi(f)
$$

It is given by $S(\omega)=\underset{t \rightarrow-\infty}{\mathbf{L}_{1}} \frac{|X(\omega)|^{2}}{\tau}$ The total power is given by

$$
P=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S(\omega) d \omega=\int_{-\infty}^{\infty} S(f) d f
$$

The autocorrelation for a power signal and its PSD form a Fourier transform pair

$$
R(\tau) \longleftrightarrow S(\omega) \text { or } R(\tau) \longleftrightarrow S(f)
$$

Relation between Autocorrelation Function and Energy/Power Spectral Density Function:

1. Relation between Autocorrelation Function and Energy Spectral Density Function:

The autocorrelation function $R(\tau)$ and energy spectral density function $\psi(\omega)$ form a Fourier transform pair, i.e.

$$
R(\tau) \longleftrightarrow \psi(\omega)
$$

Proof: The autocorrelation of a function $x(t)$ is given as:

$$
R(\tau)=\int_{-\infty}^{\infty} x(t) x^{*}(t-\tau) d t
$$

Replacing $x^{*}(t-\tau)$ by its inverse transform, we have

$$
R(\tau)=\int_{-\infty}^{\infty} x(t)\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega(t-t)} d \omega\right]^{*} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(t)\left[\int_{-\infty}^{\infty} X^{*}(\omega) e^{-j \omega(t-\tau)} d \omega\right] d t
$$

Interchanging the order of integration, we have

$$
\begin{aligned}
R(\tau) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(\omega)\left[\int_{-\infty}^{\infty} x(t) e^{-j \omega x} d t\right] e^{j \omega \tau} d \omega \\
& =\frac{1}{2 \pi} \int^{\infty} X^{*}(\omega) X(\omega) e^{j \omega r} d \omega=\frac{1}{2 \pi} \int^{\infty}|X(\omega)|^{2} e^{j \omega \pi} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \psi(\omega) e^{j \omega \tau} d \omega \quad\left[\text { since }|X(\omega)|^{2}=\psi(\omega)\right] \\
& =\mathrm{F}^{-1}[\psi(\omega)] \\
\therefore \quad \psi(\omega) & =\mathrm{F}[R(\tau)]
\end{aligned}
$$

This proves that $R(\tau)$ and $\psi(\omega)$ form a Fourier transform pair.

$$
R(\tau) \longleftrightarrow \psi(\omega)
$$

2. Relation between Autocorrelation Function and Power Spectral Density Function:

The autocorrelation function $R(\tau)$ and the power spectral density (PSD), $S(\omega)$ of a power signal form a Fourier transform pair, i.e.

$$
R(\tau) \longleftrightarrow S(\omega)
$$

Proof: The autocorrelation function of a power (periodic) signal $x(t)$ in terms of Fourier series coefficients is given as:

$$
R(\tau)=\sum_{n=-\infty}^{\infty} C_{n} C_{-n} e^{j n \omega_{0} t}
$$

where C_{n} and C_{-n} are the exponential Fourier series coefficients.

$$
\therefore \quad \text { 71/8 noltonul } n o R(r)=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} e^{\text {jne } r}
$$

Taking Fourier transform on both sides, we have

$$
\mathrm{F}[R(\tau)]=\int_{-\infty}^{\infty}\left(\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} e^{\text {jnab } \tau}\right) e^{-j \omega r} d \tau
$$

Interchanging the order of integration and summation, we get

$$
\begin{aligned}
\mathrm{F}[R(\tau)] & =\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \int_{-\infty}^{-} e^{-j \tau\left(\omega-n \omega_{0}\right)} d \tau \\
& =2 \pi \sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \delta\left(\omega-n \omega_{0}\right)=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \delta\left(f-n f_{0}\right)
\end{aligned}
$$

The RHS is the PSD $S(\omega)$ or $S(f)$ of the periodic function $x(t)$.

$$
\begin{array}{lc}
\therefore & \mathrm{F}[R(\tau)]=S(\omega)[\text { or } S(f)] \\
\text { and } & \mathrm{F}^{-1}[S(\omega)] \text { (or } \mathrm{F}^{-1}[S(f)]=R(\tau) \\
\text { e. } & R(\tau) \longleftrightarrow S(\omega)[\text { or } S(f)]
\end{array}
$$

Relation between Convolution and Correlation:

The convolution of $x_{1}(t)$ and $x_{2}(-t)$ is given by

$$
x_{1}(t) * x_{2}(-t)=\int_{-\infty}^{\infty} x_{1}(\tau) x_{2}(\tau-t) d \tau
$$

Replacing the dummy variable τ in the above integral by another variable n, we have

$$
x_{1}(t) * x_{2}(-t)=\int_{-\infty}^{\infty} x_{1}(n) x_{2}(n-t) d n
$$

Changing the variable from t to τ, we get

Hence

$$
x_{1}(\tau) * x_{2}(-\tau)=\int_{-\infty}^{\infty} x_{1}(n) x_{2}(n-\tau) d n=R_{12}(\tau)
$$

Similarly,

$$
\begin{aligned}
& R_{12}(\tau)=\left.x_{1}(t) * x_{2}(-t)\right|_{t * r} \\
& R_{21}(\tau)=\left.x_{2}(t) * x_{1}(-t)\right|_{t=r}
\end{aligned}
$$

Detection of Periodic Signals in the presence of Noise by Correlation:

Extraction of Signal from Noise by filtering.

Whenever we wish to use correlation for signal detection, we use a two-part system. The first part of the system performs the correlation and produces the correlation value or correlation signal, depending upon whether we are doing in-place or running correlation. The second part of the system examines the correlation or correlation signal and makes a decision or sequence of decisions. See the block diagram given in Figure

UNIT-I

Signal Analysis

Short Answer Questions

1. Define Signal.
2. What are the major classifications of the signal?
3. Define discrete time signals and classify them.
4. Define continuous time signals and classify them.
5. Define discrete time unit step \&unit impulse.
6. Write about discrete time exponential signals.
7. Define continuous time complex exponential signal?
8. Determine whether a Unit step signal $U(t)$ is Energy or Power Signal
9. State and prove any two properties of unit Impulse.
10. Define system and Explain various types of systems.
11. Define Causal \& Non Causal Systems.
12. Define static \& Dynamic Systems .
13. Define Stable \& Unstable Systems.
14. Define time invariant and time variant systems.
15. What is the period T of the signal $x(t)=2 \cos (t / 4)$?
16. Is the discrete time system describe by the equation $y(n)=x(-n)$ causal or non causal?
17. What is the condition of LTI system to be stable?
18. Define principle of Orthogonality.
19. Derive the expression for mean square error?
20. What is the period of the signal $x(t)=10 \sin 12 t+4 \cos 18 t$

Long Answer Questions

1. A Rectangular Function is defined as
$\mathrm{f}(\mathrm{t})=\mathrm{A} \quad 0<\mathrm{t}<\frac{\pi}{2}$
$=-\mathrm{A} \quad \frac{\pi}{2}<\mathrm{t}<\frac{3 \pi}{2}$
$=\mathrm{A} \quad \frac{3 \pi}{2}<\mathrm{t}<2 \pi$
Approximate the above function by $A \cos t$ between the intervals $(0,2 \pi)$ such that themean square error is minimum.
2. A rectangular function is defined by

$$
\begin{array}{rlrl}
\mathrm{f}(\mathrm{t}) & =1 & 0<t<\pi \\
& =-1 & & \pi<t<2 \pi
\end{array}
$$

Approximate the above function by a single sinusoid sint between the intervals($0,2 \pi$).Apply the mean square error in this approximation.
3. Explain the analogy of vectors and signals in terms of orthogonality

SIGNALS \& SYSTEMS

4. Derive the condition for mean square error when functions is approximated in set ofmutually orthogonal.
5. . Determine whether the following input-output equations are linear or non linear.
a) a) $y(t)=x^{2}(t)$
c) $y(t)=t^{2} x(t-1)$
b) $y(t)=x\left(t^{2}\right)$
d) $y(t)=x(t) \cos 50 \pi t$
6. Determine whether the following systems are time-varying or time-invariant.
a) $y(t)=t x(t)$
b) $y(t)=t^{2} x(t-1)$
c) $y(t)=a[x(t)]^{2}+b x(t)$
d) $y(t)=x(t) \cos 50 \pi t$
7. Find whether the following systems are static or dynamic.
a) $y(t)=x(t 2)$
b) $y(t)=e^{x(t)}$
c) $y(t)=\int_{0}^{\infty} x(t-\tau) d \tau$
8. Find whether the following systems are causal or non-causal.
a) $y(t)=x(-t)$
b) $y(t)=x(t+10)+x(t)$
c) $y(t)=x(\sin (t))$
d) $y(t)=x(t) \sin (t+1)$
9. Find whether the following systems are stable or unstable.
a) $y(t)=e^{x(t)}$
b) $y(t)=(t+10) x(t)$
10. a)Define and discuss the conditions for orthogonality of functions.b)Prove that sinusoidal functions are orthogonal functions.
11. a)Define orthogonal subspace.
b)Prove that the complex exponential functions are orthogonal functions.
12. Show that following signal are orthogonal over an interval

$$
\begin{aligned}
& {[0,1] f(\mathrm{t})=1} \\
& \mathrm{x}(\mathrm{t})=\sqrt{3}(1-2 \mathrm{t})
\end{aligned}
$$

13. Determine whether the following energy signal are energy or power signal thencalculate the energy or power
a) $\mathrm{X}[\mathrm{n}]=(1 / 2)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$
b) $X(t)=A e^{-a t} u(t) \quad a>0$

UNIT-II

Fourier Series \& Fourier Transforms

Short Answer Questions

1. Write down the exponential form of the Fourier Series
2. Write down the trigonometric form of the Fourier Series
3. Write short notes on Dirichlet's conditions for Fourier series.
4. Define the Parseval's Theorem?
5. State Parseval's relation for continuous time Fourier Transforms.
6. What are the difference between Fourier Series and Fourier Transform?

Long Answer Questions

1. Write a short note on exponential Fourier spectrum.
2. Find the exponential Fourier Series for the full wave rectified sine wave as shown below
for the interval $(0,2 \pi)$ with an amplitude of ' A '

3. a)State the conditions for the existence of Fourier Transform of a signal.
b) Find the Fourier Transform of the signum function and plot it's amplitude and phase spectrum.
4. Obtain the Fourier Transform of the following functions.
(i) Impulse function.
(ii) DC Signal.
(iii) Unit step function.
5. Find the Fourier Transform of the following
i) Real exponential signal, $\mathrm{x}(\mathrm{t}) \bar{e}^{-a t} \mathrm{u}(\mathrm{t}) \mathrm{a}>0$
ii) $\mathrm{x}(\mathrm{t})=e^{a t} \mathrm{u}(-\mathrm{t}) \quad \mathrm{a}<0$
iii) Rectangular pulse, $\mathrm{x}(\mathrm{t})=-1-\mathrm{T} \leq \mathrm{t} \leq \mathrm{T}$ $=1 \quad|t|<T$
6. Find the Fourier Transforms of
(a) $\cos w t u(t)$
(b) $\sin \mathrm{wt} u(t)$
7. State \& Prove following properties of Fourier Transform.
a) Convolution in Time domain
b) Time shifting
8. Find the trigonometric Fourier series and the complex exponential Fourier series for thewaveform shown in figure

9. Find the trigonometric and exponential Fourier series for the wave form shown in figure

10. a) determine the trigonometric Fourier series of a full wave rectified cosine functionshown in figure.
b) Derive the corresponding exponential Fourier series
c) Draw the complex Fourier spectrum
d) Find the exponential Fourier series directly
11.

12.
13. Find the trigonometric fourier series for the periodic signal $x(t)$ shown in figure

14. Find the trigonometric Fourier series for the periodic signal $x(t)$ shown in figure

15. Find the Fourier transform of the signal

$$
\begin{aligned}
x(t)= & e^{-[t] \mid} \text { for }-2 \leq t \leq 2 \\
& =0 \text { otherwise }
\end{aligned}
$$

16. Find the Fourier transform of the following signals:
a)
b) $\cos \omega_{0} \mathrm{tu}(\mathrm{t})$
c)
$e^{3 t} u(t) \quad$ e) $\quad e^{-2 t} \cos 5 t u(t)$
f) $e^{-|t|} \sin 5|t|$ for all t
$\sin \omega_{0} t u(t) \quad$ g) $e^{a t} u(-t)$
h) $t e^{-a t} u(t)$
d) $e^{-t} \sin 5 t u(t)$
17. Using properties of Fourier transform find the Fourier transform of the following:
a)
b) $t e^{-2 t} u(t)$
c)
d) $e^{j \omega_{0} t}$
e)
f) $\sin \omega_{0} t u(t)$
$e^{-a t} u(t)$
g) $e^{-3 t} u(t-2)$
h) $e^{-a|t-2|}$
$e^{i 2 t} u(t)$
j) $\sin \omega_{0} t$
i) $\quad \cos \omega_{0} t$
$\cos \omega_{0} t u(t)$
k) $u(-t)$

UNIT-III
 SIGNAL TRANSMISSION THROUGH LINEARSYSTEMS

Short Answer Questions

1. Define Signal Bandwidth and System Band width.
2. Write a notes on Ideal Filters.
3. Explain the difference between a time invariant system and time variant system?
4. What is the effect of under sampling?
5. Discuss about the conditions for physical reliability of an LTI system.
6. Derive an expression for the transfer function of an LTI system.

Long Answer Questions

1. Explain causality and physical reliability of a system and hence give Daleywienercriteria.
2. Obtain the relationship between the band width and rise time of ideal low pass filter.
3. Explain distortion less transmission through any system? Obtain condition for thesame?
4. Write notes on Ideal Filters.
5. Find and sketch the convolution of two
signals $\mathrm{x}(\mathrm{t})=2 \pi((\mathrm{t}-5) / 2) \quad$ and $\mathrm{h}(\mathrm{t})=\pi$ ($(\mathrm{t}-2) / 4)$.
6. Find the Convolution of the following signals are given $\operatorname{asx}(\mathrm{t})=\mathrm{e}-3 \mathrm{t} \mathrm{u}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}-1)$.

UNIT-IV
 LAPLACE TRANSFORMS \& Z TRANSFORMS

Short Answer Questions

1. Define Bilateral and unilateral Laplace Transform.
2. Define inverse Laplace Transform.
3. State the property for Laplace Transform.
4. State the time shifting property for Laplace Transform.
5. What is pole and zero plot.
6. State initial value theorem and final value theorem for Laplace Transform.
7. State Convolution property of the Laplace Transform.
8. What is region of Convergence?
9. What are the Properties of ROC in the Laplace Transform?
10. Define Z Transform.
11. What are the two types of Z Transform?
12. What is the time shifting property of Z Transform?
13. State convolution property of Z Transform.
14. State the methods to Find inverse Z Transform.
15. State multiplication property in relation to Z Transform.
16. State parseval's relation for Z Transform.
17. What is the relationship between Z Transform and Fourier Transform.
18. Define one sided Z Transform and two sided Z Transform.
19. What is the Z-Transform of sequence $x(n)=a^{n} u(n)$?
20. The final value of $x(t)=\left(2+e^{-3 t}\right) u(t)$ is obviously $x(\infty)=2$.

Long Answer Questions

1. Find the Laplace Transforms of the following functions
a. Exponential function
b. unit step function
c. sine \& cosine
2. Properties of ROC of Laplace Transforms.
3. Consider the following signals, Find Laplace Transform and region ofconvergence for each signal.
a) $x(t)=e^{-2 t} u(t)+e^{-3 t} u(t)$
b) $x(t)=e^{-4 t} u(t)+e^{-5 t} \sin 5 t u(t)$
4. Determine the function of time $x(t)$ for each of the following Laplace

Transforms(a) $x(s)=\frac{1}{s^{2}+9} \quad \operatorname{Re}\{s\}>0$
(b) $x(s)=\frac{s^{2}}{s^{2}+9} \quad \operatorname{Re}<0$
(c) $x(s)=\frac{s+1}{(s+1)^{2}+9} \quad \operatorname{Re}\{s\}<-1$
5. Determine the function of time $\mathrm{x}(\mathrm{t})$ for each of the following Laplace Transformsand their associated region of convergence
(a) $x(s)=\frac{(s+1)^{2}}{s^{2}-s-1} \operatorname{Re}\{s\}>\frac{1}{2}$
(b) $x(s)=\frac{s^{2}-s-1}{(s+1)^{2}} \quad \operatorname{Re}\{s\}>-1$
6. Find the inverse Laplace Transforms of the following functions(a)
$Y(s)=\frac{10 s}{(s+2)^{2}(s+8)}$
(b) $Y(s)=\frac{10 s}{(s+2)^{s}(s+8)}$
7. Find the inverse Laplace Transforms of the following functions(a)
$Y(s)=\frac{2 s^{2}+6 s+16}{(s+2)\left(s^{2}+2 s+2\right)}$
(b) $Y(s)=\frac{s^{4}+s^{8}+12 s^{2}+7 s+15}{(s+2)\left(s^{s}+1\right)^{x}}$
8. Find the inverse Laplace Transform and initial and final value of a given function $F(s)=\frac{6 s^{2}+8 s+5}{s\left(2 s^{2}+6 s+5\right)}$
9. a) Find the Inverse Laplace transform of $\frac{s-1}{s^{2}-6 s+25}$
b) Find the ROC of left sided functions.
10. Determine the Laplace transform and associated region of convergence and pole-zeroplot for the following function of time $x(t)=e^{2 t} u(-t)+e^{3 t} u(-t)$
11. Find the Laplace transform of $\left[4 e^{-2 t} \cos 5 t-3 e^{-2 t} \sin 5 t\right] u(t)$ and its ROC.
12. Find the z-Transform and ROC of the following
sequencesi. $\quad x[n]=\left[4\left(5^{n}\right)-3\left(4^{n}\right)\right] u(n)$
ii. $\left(\frac{1}{3}\right)^{n} \mathrm{u}[-\mathrm{n}]$ iii) $\left(\frac{1}{3}\right)^{\mathrm{n}}[\mathrm{u}[-\mathrm{n}]-\mathrm{u}[\mathrm{n}-8]]$

$\mathrm{x}[\mathrm{n}]=\cos \mathrm{n} w . \mathrm{u}[\mathrm{n}]$
b) $\mathrm{x}[\mathrm{n}]=\mathrm{a}^{\mathrm{n}} \sin \mathrm{nw} . \mathrm{u}[\mathrm{n}]$
c) $\mathrm{x}[\mathrm{n}]=\mathrm{a}^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$
14. A finite Series sequence $x[n]$ is defined as $x[n]=\{5,3,-2,0,4,-3\}$. Find $X[z]$ and itsROC.
15. Find the z -Transform of the following
sequencesa) $x[n]=a^{n} u[-n-1]$
b) $x[n]=u[-n]$
c) $x[n]=-a^{n} u[-n-1]$
16. By first differentiating $X(z)$ and using the appropriate properties of the z - Transform determine the sequence for which the z-Transform is each of thefollowing
a) $X(z)=\log (1-2 z) ;|z|<\frac{1}{2}$
b) b) $X(z)=\log \left(1-1 / 2 z^{-1}\right) ;|z|>1 / 2$
17. Find the inverse z Transform of $X(z)=\frac{z}{[z+2][z-3]}$ when ROC
isa) \quad ROC $=\{|z|<2\}$
b) \quad ROC $=\{2<|z|<3\}$
18. Using the power Series expansion technique, Find the inverse \mathbf{z}-Transform of thefollowing $X(z)$:
i) $X(z)=\frac{z}{2 z^{2}-3 z+1} ;|z|<1 / 2$
ii) $\mathrm{X}(\mathrm{z})=\frac{\mathrm{z}}{2 \mathrm{z}^{2}-3 \mathrm{z}+1} ;|\mathrm{z}|>1$
19. Determine the Laplace transform and associated region of convergenceAnd pole-zero plot for the following function of time
(a) $\mathrm{X}(\mathrm{t})=\mathrm{te}^{-\mathrm{at}} \mathrm{u}(\mathrm{t})$
(b) $\mathrm{X}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \cos (\mathrm{wt})$
20. Determine initial and final value of the system whose transfer function is given asX(s) $=(5 s+50) / s(s+5)$
21. Find the inverse Laplace transform of $\mathrm{H}(\mathrm{s})=3 \mathrm{~s}+7 / \mathrm{S}^{2}-2 \mathrm{~s}-3$ Using partial fraction method
22. What are the methods by which inverse Z-transformation can be found out?
23. a) Explain the properties' of the region of convergence of $X(z)$.
b) Discuss in detail about the double sided and single sided Z-transform. Correlate Laplace transform and Z-transform in their end use.
24. Find the first 4 terms of causal signal whose z transform is as under

$$
X(z)=\frac{4-Z^{-1}}{}
$$

$$
2^{-1}+z^{-2}
$$

25. State and prove the convolution and scale change properties in z transform.
26. Prove that the final value of $x(n)$ for $X(z)=z^{2} /[z-1][z-0.2]$ is 1.25 and its initial valueis unity.
27. Prove that the sequences $x_{1}(n)=a^{n} u(n)$ and $x_{2}(n)=-a^{n} u(-n-1)$ have the sameX (z) and differ only in ROC. Plot their ROCs.
28. Determine Z transform of following
sequence(a). $x[n]=[1,2,3,4,5,0,7\}$
(b) $x[n]=[1,2,3,4,5,0,7]$
29. Determine inverse Z transform by using power series methodX $(Z)=$

$$
1 /\left(1-a^{-1}\right) \quad|z|>|a|
$$

30. Find inverse Z transform of given functions(a) $X(Z)$
$=\log \left(1 / 1-\mathrm{az}^{-1}\right)$
(b) $\mathrm{X}(\mathrm{z})=\log \left(1 / 1-\mathrm{a}^{-1} \mathrm{z}\right)$
31. (a) Given $X(Z)=z /(z-1)^{3}$ Find $x[n]$ using contour integration method?
(b) Distinguish between one sided and double sided Z transform?

UNIT-V

Sampling \& Correlation

1. State Sampling theorem.
2. What is meant by aliasing?
3. What are the effects of aliasing?
4. Define Nyquist's rate.

Long Answer Questions

1. What is the Nyquist's Frequency for the signal $x(t)=3 \cos 50 t+10 \sin 300 t-\cos 100 t$?
2. For the analog signal $x(t)=3 \cos 100 \pi t$
a) Determine the minimum sampling rate to avoid aliasing
3. Determine the Nyquist's rate and interval corresponding to each of the following signal
(i) $x(t)=1+\cos 2000 \pi t+\sin 4000 \pi t$
(ii) $x(t)=\frac{\sin 4000 \pi t}{\pi t}$
4. Determine and sketch the auto correlation function of given exponential pulse.x $(\mathrm{t})=$ $\mathrm{e}^{-a t} \mathrm{u}(\mathrm{t})$.
5. Show that auto-correlation function and energy density spectrum form a Fouriertransform pair.
6. Show that auto-correlation function and power spectral density form a Fouriertransform pair.
7. State sampling Theorem for band-limited signals. Prove the theorem graphically. What is Aliasing effect?
8. Define Autocorrelation Function and explain its properties?
9. Define Cross-correlation Function and explain its properties?
10. Define Energy spectral density and explain its properties?
11. Define Power spectral density and explain its properties?
12. Determine the autocorrelation function and energy spectral density of $x(t)=e^{-a t} u(t)$.
13. Find the autocorrelation of the signalx $(\mathrm{t})=\mathrm{A}$ $\sin \left(\omega_{0} t+\theta\right)$
14. If $x(t)=\sin \omega_{0} t$, and
i) $\mathrm{R}(\tau)$
ii) ESD

FDP'S .PPT'S/NPTEL VIDEOS/any otherWEBSITES:

1. https://youtu.be/0nZYen9w eo
2. https://youtu.be/8JIw1i1y4mE
3. https://youtu.be/Bt3CaGLuqgE
4. https://youtu.be/879pXoml0XI
5. https://youtu.be/VDy8nwyKaAw
6. https://youtu.be/PZfZGbbBuxk

7.STUDENT SEMINAR TOPICS

LIST OF TOPICS FOR STUDENT SEMINARS:

1. Orthogonality in Complex functions
2. Elementary signals
3. Dirichlet's conditions
4. Fourier Transform of Periodic Signals
5. Hilbert Transform
6. Causality and Paley-Wiener criterion for physical realization
7. Relation between L.T and F.T of a signal
8. Effect of under sampling - Aliasing
9. Relation between Convolution and Correlation,
10.Extraction of Signal from Noise by Filtering.

Time: 3 Hours

Max. Marks: 75

Nốte:" This questiön päper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART-

1.a) Define Mean Square Error.
b) What is an Orthogonal function?
c) What is Signum Function?
d) .. Write about.the properties of Hilbert Transform
e) ...Define System Bandwidth.[2]
f) What is Causality?
g) Define spectral density.
h) When the convolution and correlation equivalent?
i) What is steady state response?
j) . \because What is the condition for Z - transform exist?.

PART-B
2.a) Derive the expression for computing Mean square Error in approximating a function $f(t)$ by a set of n orthogonal functions.
b): : : \because Explain about the complete set of Orthogonal functions.

OR

3.a) Explain about the Trignometric Fourier series.
b) Write about the complex fourier spectrum.
4.a) State and prove the time shifting and frequency shifting properties of Fourier transform.
b.): Explain about the effects of under sampling.

OR
5.a) State and Prove Sampling Theorem for bandpass signals.
b) Write about the band pass sampling.
6.a) Write about the relationship between bandwidth and rise time in linear system:...
b) $\quad \cdots$ Explain about the Transfer function of a LTI system.

OR
7.a) Explain about the Impulse response of Linear system.
b) Write about the Paley-Wiener criterion for physical realization of system.

b) *...Define Convotution Theorem Time and Frequency domain and bring out the expression for convolution in Time domain.

OR

9.a) Write about the Detection of periodic signals in the presence of Noise by Correlation.
b) ... Explain about the Extraction of signal from noise by filtering.
[5+5]
10.a) State and prove Time-reversal, Time-Shifting and scaling properties with respect to Z-transform.
b) Using differentiation property find the Z-transform of $x(n)=n^{2} u(n)$.

11,a) .. State and Prove Initial value and Final value theorem with respect to Laplace transform. b) :... Explain about the concept of Region of Conyergence (ROC) for Laplace Transforms.
---00000---

SIGNALS \& SYSTEMS

Code No: 133BQ

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, May/June - 2019

SIGNALS AND STOCHASTIC PROCESS
(Common to ECE, ETM)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

1.a) Give the condition for the physical reliability of a system.
(25 Marks)
b) What are the properties of convolution?
c) State any two properties of Fourier series.
d) Find the Fourier transform of the signal $x(t)=20 \operatorname{sinc}(20 t)$.
e) Explain the concept of region of convergence for Laplace transforms.
f) Write the differentiation in time property of Laplace transform.
g) Define random process.
h) Give the relation between correlation and Convolution.
i) Verify that the cross spectral density of two uncorrelated stationary randomprocesses is an impulse function.
j) Define cross -spectral density and its examples.

PART-B
(50 Marks)
2. Graphically convolve the
signals

$$
X_{1}(t)=\left\{\begin{array}{l}
1 ; \text { for }-T \leq t \leq T \tag{10}\\
0 \text { elsewhere }
\end{array} \text { and } X_{2}(t)=\left\{\begin{array}{l}
1 ; \text { for }-2 T \leq t \leq 2 T \\
0 ;
\end{array}\right.\right.
$$

OR

3.a) What is an LTI system? Explain the properties of it.
b) Find whether $\mathrm{x}(\mathrm{t})=A \mathrm{e}^{-\alpha(\mathrm{t})} \mathrm{u}(\mathrm{t}), \alpha>0$ is an energy signal or not.
4.a) Obtain the Fourier series coefficients for $\mathrm{x}(\mathrm{t})=$ A Sin
b) $\omega_{0} t$.What is the Significance of Hilbert Transform?

Explain.
OR
5. Define Fourier transform. Explain the properties of Fourier transform.
6.a) Find the Laplace transform of $x(t)=-t^{2} e^{-a t} u(-t)$ and indicate its ROC.
b) Find the inverse Laplace transform of
www .manaresults.co.in

SIGNALS \& SYSTEMS

$$
\begin{equation*}
x(s)=5(s+5) / s(s+3)(s+7) ; \operatorname{Re}(s)>-3 \tag{5+5}
\end{equation*}
$$

OR
7.a) Find the inverse Z- transform $\quad X(z)=\frac{1+3 z^{-1}}{1+3 z^{-1}+2 z^{-2}}$ for different possible ROCs.
of
b) Give the relationship between z-transform and Laplace Transform.
8.a) A Random Process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Cos}\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}\right)$, where A is a Gaussian Random Variable with zero mean and unity variance, is applied to an ideal integrator, that integrates with respect to ' t ', over $(0, \mathrm{t})$. Check the output of integrator for stationarity.
b) A random Process is defined as $\mathrm{X}(\mathrm{t})=3 \operatorname{Cos}(2 \pi t+\mathrm{Y})$, where Y is a random Variable with $p(Y=0)=p(Y=\pi)=1 / 2$. Find the mean and Variance of the Random Variable $X(2)$. [5+5] OR
9.a) State and prove properties of cross correlation function.
b) If the PSD of $X(t)$ is $S_{x x}(\omega)$. Find the PSD of $d x(t) / d t$.
10.a) Find and plot the Autocorrelation function of
(i) Wide band White noise
(ii) Band Pass White noise.
b) Derive the expression for the Cross Spectral Density of the input Process $\mathrm{X}(\mathrm{t})$ and theoutput process $\mathrm{Y}(\mathrm{t})$ of an LTI system in terms of its Transfer function. [5+5] OR
11. The auto correlation function of a random process $X(t)$ is $R_{x x}(\tau)=3+2 \exp \left(-4 \tau^{2}\right)$
a) Evaluate the power spectrum and average power of $X(t)$.
b) Calculate the power in the frequency band $-1 / \sqrt{ } 2<\omega<1 / \sqrt{2}$.
www.manaresults.co.in

SIGNALS \& SYSTEMS

8.a) A Random Process $\mathrm{X}(\mathrm{t})=\mathrm{A} \operatorname{Cos}\left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}\right)$, where A is a Gaussian Random Variable with zero mean and unity variance, is applied to an ideal integrator, that integrates with respect to ' t ', over ($0, \mathrm{t}$). Check the output of integrator for stationarity.
b) A random Process is defined as $\mathrm{X}(\mathrm{t})=3 \operatorname{Cos}(2 \pi \mathrm{t}+\mathrm{Y})$, where Y is a random Variable with $p(\mathrm{Y}=0)=\mathrm{p}(\mathrm{Y}=\pi)=1 / 2$. Find the mean and Variance of the Random Variable $\mathrm{X}(2)$. [5+5] OR
9.a) State and prove properties of cross correlation function.
b) If the PSD of $X(t)$ is $S_{x x}(\omega)$. Find the PSD of $d x(t) / d t$.
10.b) Find and plot the Autocorrelation function of
(i) Wide band White noise
(ii) Band Pass White noise.
b) Derive the expression for the Cross Spectral Density of the input Process $\mathrm{X}(\mathrm{t})$ and theoutput process $\mathrm{Y}(\mathrm{t})$ of an LTI system in terms of its Transfer function. [5+5] OR
12. The auto correlation function of a random process $X(t)$ is $R_{X X}(\tau)=3+2 \exp \left(-4 \tau^{2}\right)$
a) Evaluate the power spectrum and average power of $X(t)$.
b) Calculate the power in the frequency band $-1 / \sqrt{2}<\omega<1 / \sqrt{2}$.

SIGNALS \& SYSTEMS

Code No: 153BT

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, March - 2021

SIGNALS AND SYSTEMS
(Common to ECE, EIE)
Max. Marks: 75
Time: 3 hours
Answer any five questions All questions carry equal

1.a) State and prove the properti sof hpulse Function.
b) How to approximate the give hal using complete set of orthogonal functions? Explain with one example.
2.a) Find the Exponential Fourier series of
b) Find the Fourier Transform of the signal $x(t)$
3.a) Find and sketch the impulse response of Ideal Band ass Filter.
b) Find the convolution betweenure oll wing signals:

4.a) Find the impulse response of the system descr ed by the differentinanati n. $y^{\prime}(t)+5 y^{\prime}(t)+4 y(t)=6 x(t)$
b) State and prove initial final value Theorems of Z-transform.

5.a) State and prove Sampling theorem for band limited signals.
b) Derive the relationship between Autocorrelation function and Power spectral densityfunction.
6.a) Find the Hilbert Transform of the signal

$$
x(t)=\cos (t)+\sin (t)
$$

SIGNALS \& SYSTEMS

b) Check the stability of the system $y(t)=t x(t)$.
7.a) Derive the conditions for distortion less transmission through a system.
b) State and prove the multiplication theorem of Fourier Transform.
8.a) State and prove time shifting property of Laplace Transform.
b) State and prove convolution theorem of z-transform.
B.Tech II Year I Semester Examinations, October - 2020

SIGNALS AND SYSTEMS
(Common to ECE, EIE)
Time: 2 hours
Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Show that $\mathrm{f}(\mathrm{t})$ is orthogonal to signals cost, $\cos 2 \mathrm{t}, \cos 3 \mathrm{t}, \ldots$ cos $n t$ for all integer values ofn, $\mathrm{n} \neq 0$, over the interval $(0,2 \pi)$ if $x(t)=\left\{\begin{array}{c}1, \text { for } 0<t<\pi \\ -1, \text { for } \pi<t<2 \pi\end{array}\right.$
b) Discover the analogy of vectors and signals in terms of orthogonality.
2.a) Estimate the mean square error value of a function $f(t)$.
b) Sketch the following signals (i) $\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{t}-1)-\mathrm{r}(\mathrm{t}-3)+\mathrm{r}(\mathrm{t}-4)(\mathrm{ii}) \pi\left(\frac{\mathrm{t}-2}{}\right)+\pi(2 t-3.5)[7+8]$
3.a) Assume that $\mathrm{T}=2$, determine the Fourier series expansion of the signal shown below figure 1 with amplitude of ± 1.

b) Prove the following properties of the Fourier transform: (i) duality (ii) modulation.[8+7]
4.a) Determine the exponential Fourier series from trigonometric Fourier series.
b) Solve the Fourier transform of the rectangular pulse.
5.a) Find the convolution of the rectangular pulse given below figure 2 with itself.

Figure: 2

b) Explain causality and physical relizability of a system and give Paley wiener criterion.
6.a) A system produces an output of $y(t)=e^{-t} u(t)$ for an input of $x(t)=e^{-2 t} u(t)$. Determine the impulse response and frequency response of the system.
b) Compare the signals and system bandwidth.
7. Evaluate the Laplace Transforms of the following functions:
a) Exponential function
b) Unit step function
c) Damped sine function.
8.a) Prove that for a signal, auto correlation and PSD form a Fourier transform pair.
b) A function $f(t)$ has a PSD of $S(w)$. Find the PSD of i) integral of $f(t)$ and ii) time derivative of $\mathrm{f}(\mathrm{t})$.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, March- 2022

SIGNALS AND SYSTEMS

(Common to ECE,

Time: 3 Hours
Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Define Dirac Delta function, draw its waveform and Summerize its properties.
b) Obtain the condition under which two real signals $f_{1}(t)$ and $f_{2}(t)$ are said to be orthogonalto each other. Hence, prove that $\operatorname{Sin} n \omega_{0} t$ and $\operatorname{Cos} m \omega_{0} t$ are orthogonal to each other for all integer values of m, n.
2. Classify the signals under different categories and then explain the same.
a. State the existence conditions of fourier series.
b) Find the Trigonometric Fourier series coefficients and build Fourier series for the following signal.

c) Explain about Complex fourier spectrum.
4.a) Obtain the Fourier transform of the following signals
i) $4 \operatorname{Cos} 2 \omega_{0} t$
ii) $e^{-4 t} u(t)$
b) State and prove the following properties of Fourier transform.
i) Convolution in time domain
ii) Differentiation in time domain.
5.a)With the help of plots, determine the convolution of the following two signals in time domain. $\mathrm{x}_{1}(\mathrm{t})=\mathrm{e}^{-4 \mathrm{t}} \mathrm{u}(\mathrm{t})$ and $\mathrm{x}_{2}(\mathrm{t})=\mathrm{u}(\mathrm{t}+4)$.
b) Explain about stability and causality of an LTI system.
6.a) Perform the graphical convolution of the following signals:

$$
x(t)=\overline{\overline{1}} e^{-a t} u(t) ; x(t)=u(t)-u(t-3) .
$$

b) List and explain the properties of convolution and prove any one.
7.a) Determine the Laplace transform of the following two signals.
i) $e^{-a t} \sin (b t) u(t)$
ii) $x(t)=t e^{-a t} u(t)$
b) State and prove the following properties of z-transform
i) Time shifting
ii) Convolution

SIGNALS \& SYSTEMS

8.a) State and explain the sampling theorem for band limited signals with graphs analysis.
b) Define cross correlation function? State and prove the properties of cross correlation function.
[7+8]
SAMPLE INTERNAL EXAMINATION QUESTION PAPER WITH KEY

PART-A

I. Choose the correct alternative:

Answer All Questions. All Questions carry Equal Marks. $1 \times 10=10$

1. A signal can be represented in
a)Time domain
b) frequency domain
c) both a \& b
d) none of the above
2. $\delta(\mathrm{n})=$
a) $u(n)+u(n-1)$
b) $u(n) u(n-1)$
c) $u(n)-u(n-1)$
d) $u(n-1)+u(n)$
3. $\mathrm{x}(\mathrm{t})=e^{-5 t} u(t)$ is a
a) Power signal
b) energy signal
c) Neither a or b
d) Both a \& b
4. A set of functions $\left\{\mathrm{g}_{\mathrm{r}}(\mathrm{t})\right\}$ mutually orthogonal over the interval $\left[\mathrm{t}, \mathrm{t}_{2}\right]$ is called a closed or complete set if there exist no function $\mathrm{x}(\mathrm{t})$ such that
a) $\int_{\mathrm{t} 1}^{\mathrm{t} 2} x(t) \operatorname{gr}(\mathrm{t}) \mathrm{dt}=0$
b) $\int_{\mathrm{t} 1}^{\mathrm{t} 2} x(t) \operatorname{gr}(\mathrm{t}) \mathrm{dt}=\infty$
c) $\int_{\mathrm{t} 1}^{\mathrm{t} 2} x(t) \mathrm{dt}=0$
b) $\int_{\mathrm{t} 1} x(t) \operatorname{gr}(\mathrm{t}) \mathrm{dt}$
d) $\int_{\mathrm{t} 1}^{\mathrm{t} 2} x(t) \mathrm{dt}=1$
5. If we approximate a function by its orthogonal function the error will be
a) Zero
b) small c) large
d) infinity
6. The trigonometric Fourier series representation of an odd function consists of
a) Cosine terms only
b) sine terms only c) Both sine and cosine terms d) None
7. How much phase shift does an Hilbert transformer impart on the input?

Marks:

$$
\left[\begin{array}{ll}
{[}
\end{array}\right]
$$

of
a) 45°
b) 180°
c) 135°
d) 90°
8. The phase spectrum of exponential Fourier series is \qquad about vertical axis
c) Both a\&b
d) None
9. Fourier transform is applicable to
a) Only periodic signals b) Only aperiodic signals
c) Both $a \& b$
d) only random signals
10. The relation between a signum function and a unit step function is $\operatorname{sgn}(t)=$
a) $u(t)-u(-t)$
b) $u(t)-1 \quad$ c) $2 u(t)$
d) $2 u(t)-1$

II. Fill in the Blanks:

11. For an anti -causal $x(t)=0$ for \qquad
12. Recursive Systems are basically characterized by the dependency of its output on

Discrete time signals are \qquad in time \qquad amplitude.
14. \qquad is defined as any physical quantity that varies with time, space or any other independent variable
15. The characteristics of an LTI system are completely determined by its \qquad response.
16. A signal which cannot be represented by mathematical equation is called
17. The representation of signals over a certain interval of time in terms of linear combination of orthogonal signals is called \qquad
18. For an LTI discrete system to be stable, the square sum of the impulse response should be
19. \qquad the Fourier transform of $\mathrm{e}^{\mathrm{j}}{ }_{0} \mathrm{t}$.
20. The Fourier spectrum exists only at \qquad frequencies.

PART-B

SIGNALS \& SYSTEMS

III. Answer any TWO of the following questions
 10M

1. a) Derive the expression for component vector of approximating the function $f_{1}(t)$ over $f_{2}(t)$ and also prove
that the component vector becomes zero if the $f_{1}(t)$ and $f_{2}(t)$ are orthogonal.
b) Define Fourier transform. Find the Fourier transform of $x(t)=e^{-a t} u(t)$. (2.5M)
2. a). How do you approximate a signal using orthogonal functions?
(2.5M)
b) . Determine the Trigonometric Fourier Series for the periodic sawtooth waveform shown below. (2.5M)

3.a) Write short notes on energy signal. Find whether $x(t)=A e^{-\alpha(t)} u(t), \alpha>0$ is an energy signal or not.
b) Determine the exponential fourier series for the impulse train

3. a) Distinguish between i) linear and non-linear systems, ii) time invariant and time variant systems? (2.5M)
b) State and prove the properties of Fourier transform. (any three)

Key answers:
I. chooses

$1 . \mathrm{C}$	$6 . \mathrm{B}$
$2 . \mathrm{C}$	$7 . \mathrm{D}$
$3 . \mathrm{B}$	$8 . \mathrm{B}$
$4 . \mathrm{A}$	$9 . \mathrm{C}$
$5 . \mathrm{B}$	$10 . \mathrm{D}$

II. Blanks

$11 . \mathrm{t}>0$	16. Deterministic
12. Present input, Past input, Previous outputs	17. Fourier series
13. Discrete, continuous	18. Finite
14. Signal	$19.2 \pi \delta\left(\omega-\omega_{0}\right)$
15. Impulse	20. Discrete

