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1.PEO’S, PO’S, PSO’S 
  
PROGRAM EDUCATIONAL OBJECTIVES: 
PEO1: To excel in different fields of electronics and communication as well as in 
multidisciplinary areas. This can lead to a new era in developing a good electronic product.   
PEO2: To increase the ability and confidence among the s tudents to solve any problem in their 
profession by applying mathematical, scientific and engineering methods in a better and 
efficient way.  
PEO3: To provide a good academic environment to the students which can lead to excellence, 
and stress upon the importance of teamwork and good leadership qualities, written ethical 
codes and guide lines for lifelong learning needed for a successful professional career.  
PEO4: To provide student with a solid foundation to students in all areas like mathematics, 
science and engineering fundamentals required to solve engineering problems, and also to 
pursue higher studies.  
PEO5: To expose the student to the state of art technology so that the student would be in a 
position to take up any assignment after his graduation.  
 
PROGRAM OUTCOMES:- 
Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an 
engineering specialization to the solution of complex engineering problems. 
Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems 
reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering 
sciences. 
Design/development of solutions: Design solutions for complex engineering problems and design system 
components or processes that meet the specified needs with appropriate consideration for the public health 
and safety, and the cultural, societal, and environmental considerations. 
Conduct investigations of complex problems: Use research-based knowledge and research methods 
including design of experiments, analysis and interpretation of data, and synthesis of the information to 
provide valid conclusions. 
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering 
and IT tools including prediction and modeling to complex engineering activities with an understanding of the 
limitations. 
The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, 
safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering 
practice. 
Environment and sustainability: Understand the impact of the professional engineering solutions in 
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable 
development. 
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the 
engineering practice. 
Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, 
and in multidisciplinary settings. 
Communication: Communicate effectively on complex engineering activities with the engineering 
community and with society at large, such as, being able to comprehend and write effective reports and design 
documentation, make effective presentations, and give and receive clear instructions. 
Project management and finance: Demonstrate knowledge and understanding of the engineering and 
management principles and apply these to one’s own work, as a member and leader in a team, to manage 
projects and in multidisciplinary environments. 
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Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent 
and life-long learning in the broadest context of technological change. 
 
PROGRAM SPECIFIC OUTCOMES: 
 
     PSO1:  The ability to absorb and apply fundamental knowledge of core      Electronics 
and Communication Engineering subjects in the analysis, design, and development of various 
types of integrated electronic systems as well as to interpret and synthesize the experimental 
data leading to valid conclusions.  

PSO2:  Competence in using electronic modern IT tools (both software and hardware) 
for the design and analysis of complex elect ronic systems in furtherance to research activities.  

PSO3:  Excellent adaptability to changing work environment, good interpersonal skills 
as a leader in a team in appreciation of professional ethics and societal responsibilities.  
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2.Syllabus Copy 
 

EC304PC : SIGNALS AND SYSTEMS (SS) 
 B.Tech. II Year I Semester                       L T P C 
                          3 1 0 4 
 Course Objectives:  

1. This gives the basics of Signals and Systems required for all Electrical Engineering related courses. 

2.To understand the behavior of signal in time and frequency domain 

3.To understand the characteristics of LTI systems 

    4.This gives concepts of Signals and Systems and its analysis using different transform techniques  
Course Outcomes:  

1. Differentiate various signal functions. 

2.Represent any arbitrary signal in time and frequency domain. 

3.Understand the characteristics of linear time invariant systems. 

4.Analyze the signals with different transform technique 

 

UNIT - I :Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal 

approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, 

Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, 

Concepts of Impulse function, Unit Step function, Signum function 
 
 UNIT - II:  
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, 

Dirichlet’s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum. 

Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, 

Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, 

Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform. 
 
 
UNIT - III:  
Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, 

Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter 

characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System 

Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical 

realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of 

convolution in Time domain and Frequency domain, Graphical representation of Convolution. 
 
 
UNIT - IV:  
Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, and Concept of Region of 

Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace 

Transform of certain signals using waveform synthesis. 

Z–Transforms: Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z 

Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse 

Z-transform, Properties of Z-transforms. 
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UNIT - V:  
Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat 

top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band 

Pass Sampling. 

Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation 

Functions, Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum, Relation 

Between Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution 

and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from 

Noise by Filtering. 
 
TEXT BOOKS:  
 
1.Signals, Systems & Communications - B.P. Lathi, 2013, BSP. 

2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2 Ed. 
 
REFERENCES:  
 
1. Signals and Systems – Simon Haykin and Van Veen, Wiley 2 Ed., 
2. Signals and Systems – A. Rama Krishna Rao, 2008, TMH 

3. Fundamentals of Signals and Systems - Michel J. Robert, 2008, MGH International Edition. 
4. Signals, Systems and Transforms - C. L. Philips, J.M.Parr and Eve A.Riskin, 3 Ed., 2004, PE. 
5. Signals and Systems – K. Deergha Rao, Birkhauser, 2018. 
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3.Class Time Table & Individual Time Table 
 
Class: II/IV B. Tech – I Semester    LECTURE HALL – B1 G04         Branch: ECE-A 

W.E. F -28/11/2022              

 ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT 

 

Day/ 

Time 

9:15 am 

to 

10:15 am 

10:15 am 

to 

11:15 am 

11:15 am 

to 

12:15 pm 

12:15 pm 

to 

1:15 pm 

1:15 pm 

to 

2:00 pm 

2:00 pm 

to 

3:00 pm 

3:00 pm 

to 

4:00 pm 

Monday EDC DSD NATL PTSP 
L 

U 

N 

C 

H 

DSD LAB/EDC LAB 

Tuesday NATL PTSP DSD SS EDC LIBRARY 

Wednesday DSD PTSP EDC NATL SS SEMINAR 

Thursday SS EDC EDC LAB/DSD LAB PTSP TUTORIAL 

Friday NATL SS PTSP DSD COI SPORTS 

Saturday SS NATL DSD EDC BS LAB 

 

 

 

Probability Theory and Stochastic Process  : Dr. R. Prabhakar 

Network Analysis and Transmission Lines  : Mr. N. Srinivasa Rao (CI) 

Digital System Design     : Mrs. B. Kalpana 

Signals and Systems     : Ms. G. Haritha   

Electronic Devices and Circuits   : Mr. G.F. Harish Reddy 

Basic Simulation Lab  : Mr. A. Suresh/ 

Ms. G. Haritha 

Digital System Design Lab  : Ms. Y. Bhagya Lakshmi/ 

   Mr. T. Pavan Vinayak 

Electronic Devices and Circuits Lab  : Mr. G.F. Harish Reddy/ 

   Mr. M. Rajesh/ 

   Mr. K. Srisailam 

Constitution of India  : Mrs. G. Indira 

Seminar      : Ms. Y. Bhagya Lakshmi 

 

 

 

 

HOD, ECE         PRINCIPAL 
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Class: II/IV B. Tech – I Semester    LECTURE HALL – B1 G 07                

Branch: ECE-BW.E. F -28/11/2022            

   ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT 

 

Day/ 

Time 

9:15 am 

to 

10:15 am 

 10:15 am 

to 

11:15 am 

11:15 am 

to 

12:15 pm 

12:15 pm 

to 

1:15 pm 

1:15 pm 

to 

2:00 pm 

2:00 pm 

to 

3:00 pm 

3:00 pm 

to 

4:00 pm 

Monday SS  NATL EDC DSD 

L 

U 

N 

C 

H 

PTSP SPORTS 

Tuesday DSD  EDC DSD LAB/EDC LAB SS LIBRARY 

Wednesday PTSP  SS DSD EDC NATL SEMINAR 

Thursday NATL  DSD SS PTSP BS LAB 

Friday DSD  PTSP NATL SS EDC TUTORIAL 

Saturday EDC  NATL PTSP COI EDC LAB/DSD LAB 

 

 

 

 

 

Probability Theory and Stochastic Process  : Dr. R. Prabhakar 

Network Analysis and Transmission Lines  : Mr. K. Y. Srinivas  

Digital System Design     : Mrs. B. Kalpana (CI) 

Signals and Systems     : Ms. G. Haritha   

Electronic Devices and Circuits   : Mr. G.F. Harish Reddy 

Basic Simulation Lab  : Mr. A. Suresh/ 

Ms. G. Haritha 

Digital System Design Lab  : Mr. T. Pavan Vinayak / 

Ms. Y. Bhagya Lakshmi 

Electronic Devices and Circuits Lab  : Mr. G.F. Harish Reddy/ 

   Mr. M. Rajesh/ 

   Mr. K. Srisailam 

Constitution of India  : Mrs. G. Indira 

Seminar      : Mrs. B. Kalpana 
 

 

 

HOD, ECE         PRINCIPAL 
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Class: II/IV B. Tech – I Semester    LECTURE HALL – B1 G12               

 Branch: ECE-CW.E. F -28/11/2022            

   ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT 

 

Day/ 

Time 

9:15 am 

to 

10:15 am 

10:15 am 

to 

11:15 am 

11:15 am 

to 

12:15 pm 

12:15 pm 

to 

1:15 pm 

1:15 pm 

to 

2:00 pm 

2:00 pm 

to 

3:00 pm 

3:00 pm 

to 

4:00 pm 

Monday NATL SS PTSP EDC 

L 

U 

N 

C 

H 

BS LAB 

Tuesday SS NATL DSD PTSP PTSP SPORTS 

Wednesday EDC DSD NATL DSD DSD LAB/EDC LAB 

Thursday PTSP NATL COI SS EDC LIB 

Friday DSD EDC EDC LAB/DSD LAB SS SEMINAR 

Saturday PTSP SS EDC NATL DSD TUTORIAL 

 

 

 

 

 

 

 

 

Probability Theory and Stochastic Process  : Dr. R. Prabhakar 

Network Analysis and Transmission Lines  : Mr. N. Srinivasa Rao 

Digital System Design     : Mrs. G. Subhashini 

Signals and Systems     : Ms. G. Haritha (CI) 

Electronic Devices and Circuits   : Mr. G.F. Harish Reddy 

Basic Simulation Lab     : Ms. G. Haritha/ 

Mr. A. Suresh 

Digital System Design Lab  : Mr. T. Pavan Vinayak/ 

   Ms. Y. Bhagya Lakshmi 

Electronic Devices and Circuits Lab  : Mr. G.F. Harish Reddy/ 

   Mr. M. Rajesh/ 

Mr. K. Srisailam 

Constitution of India  : Mrs. G. Indira 

Seminar      : Ms. G. Haritha 
 

 

 

 

 

 

HOD, ECE         PRINCIPAL 

 

 

 
                         III-I ECE-A,B,C 
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Individual Time Table 
 

 9.15- 
10.15 

10.15- 
11.15 

11.15- 
12.15 

12.15-1.15 1.15-2.00 2.00- 
3.00 

3.00- 
4.00 

MON SS(B) SS(C)   L U N C 
H 

  

TUES SS(C) SS(C)    SS(A) SS(B)  

WED  SS(B)   SS(A)  

THUR SS(A)  SS(B) SS(C)   

FRI  SS(A)  SS(B) SS(C)  

SAT SS(A) SS(C)     
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4.Students Roll List 
 
 
 

MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE 

ELECTRONICS AND COMMUNICATION  ENGINEERING 

Class: II Year- I Sem Branch: B.Tech-ECE-A 

Batch: 2021-2025 A.Y: 2022-2023 

S.NO Roll Number Name of the Student 

1 21S11A0401 ABHIRAM TALLA 

2 21S11A0402 AKASH BASHETTY 

3 21S11A0403 AKSHAY KUMAR REDDY 

4 21S11A0404 ANJANEYULU KAMMARI KUNCHANAGARI 

5 21S11A0405 ANKIT RAJ 

6 21S11A0406 ASAD PASHA SHAIK 

7 21S11A0407 ASHWINI CHETHIPATTI 

8 21S11A0408 BHARATH K 

9 21S11A0409 BHEESHMA SANDI  

10 21S11A0410 CHAITHANYA ANUMANCHINENI 

11 21S11A0411 CHANTI BODA 

12 21S11A0412 DARSHAN KUMBAM 

13 21S11A0413 GANESH VANKUDOTH 

14 21S11A0414 SANGHISHETTY 

15 21S11A0415 HARIKA SATTI 

16 21S11A0416 HASINI BASHETTY 

17 21S11A0417 JAGADEESH SANGHISHETTY 

18 21S11A0418 JAYA PRAKASH REDDY PANYALA 

19 21S11A0419 JEEVANA GATLA 

20 21S11A0420 KALYANI JULKAPELLI 

21 21S11A0421 MANISHA MULA 

22 21S11A0422 MEHAR NIKHIL MANNE 

23 21S11A0423 NANDINI MANNE 
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24 21S11A0424 NITISH REDDY KOTHAKAPU 

25 21S11A0425 PAVAN KUMAR MALLAPPAGARI 

26 21S11A0426 PRAKASHAM VADAPARTHI 

27 21S11A0427 RAHITH KUMAR KANDLAGUNTA 

28 21S11A0428 RAJESHWAR J 

29 21S11A0429 RANI ANANTHA 

30 21S11A0430 REKHA MANGA 

31 21S11A0431 REVATHI MEESALA 

32 21S11A0432 RISHAB SAKALE 

33 21S11A0433 SAI KRISHNA REDDY 

34 21S11A0434 SAI RATNA VEMULA 

35 21S11A0435 SAI RITHIK SIBYALA 

36 21S11A0436 SAI SRIYA PETTEM 

37 21S11A0437 SAI VENKATA KRISHNA MRUDUL 

38 21S11A0438 SHANKHABRATA ROY RAYANAPATI 

39 21S11A0439 SHARATH CHANDRA REDDY YALLA 

40 21S11A0440 SHIVA SAI REDDY SHAGAM 

41 21S11A0441 SHIVA SHANKAR BADDULA 

42 21S11A0442 SREENIPA NANDELLI 

43 21S11A0443 SRIRAM REDDY ANANTHA 

44 21S11A0444 SRIRAM REDDY ANANTHA 

45 21S11A0445 SYED FAHAD 

46 21S11A0446 TUSHWANTH KARUTURI 

47 21S11A0447 VAISHNAVI DEVA 

48 21S11A0448 VENKAT RAO THOKALA 

49 21S11A0449 VENKATA NAGA VARSHITHA POLISETTY 

50 21S11A0450 VIJAY KUMAR KASAM 

51 21S11A0451 VINAY SANGEM 

52 21S11A0452 VISHNU VANGARI 
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MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE 

ELECTRONICS AND COMMUNICATION  ENGINEERING 

Class: II Year- I Sem Branch: B.Tech-ECE-B 

Batch: 2021-2025 A.Y: 2022-2023 

1 21S11A0453 AJAY KUMAR REDDY VITTA 

2 21S11A0454 AKHILA BHUKYA 

3 21S11A0455 AKSHAY GOUD DURGAM 

4 21S11A0456 AKSHAY MIRUPALA 

5 21S11A0457 ANJANEYULU B 

6 21S11A0458 ARJUN VISLAVATH 

7 21S11A0459 BHANU SAI NAGENDER PAPPALA 

8 21S11A0460 BHARGAVI MANDHUGULA 

9 21S11A0461 CHETHAN THEEGALA 

10 21S11A0462 DEVI PRIYANKA NARIKALAPA 

11 21S11A0463 ESHWAR BOLLAPALLI 

12 21S11A0464 ESHWAR VENKATA SATYA SAI 

13 21S11A0465 GANGADHAR REDDY CHALLA 

14 21S11A0466 JAI SINGH ROTHVAN 

15 21S11A0467 JEEVAMRUTHA AKARAPU 

16 21S11A0468 KARTHIK KUMAR C 

17 21S11A0469 KRISHNA TOLUPUNURI 

18 21S11A0470 MAHESH NOMULA 

19 21S11A0471 MANI VEERA NAGENDRA DASARI 

20 21S11A0472 MANOJ KUMAR VELISHALA 

21 21S11A0473 NAGA RAJU RAVULA 

22 21S11A0474 NAGARAJU ARUGONDA 

23 21S11A0475 NEETHU BOKKA 

24 21S11A0476 NIKHITHA GANGALA 

25 21S11A0477 PAVAN KUMAR UPUTURI 

26 21S11A0478 PAVAN YALKAPALLY 

27 21S11A0479 POONAM SAHU 

28 21S11A0480 PRAKASH KATLA 
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29 21S11A0481 PREMKANTH KOMMINENI 

30 21S11A0482 RAJENDER VANKUDOTH 

31 21S11A0483 RAKESH KRISHNA JAKKA 

32 21S11A0484 ROHITH REDDY PULAKANTI 

33 21S11A0485 SAI KUMAR REDDY MANDAPATI 

34 21S11A0486 SAI PRASAD K 

35 21S11A0487 SAI PRASAD REDDY AKKENAPALLY 

36 21S11A0488 SAICHAND KARRA 

37 21S11A0489 SAINADH TEEGALA 

38 21S11A0490 SAITEJA KODHATI 

39 21S11A0491 SAKETHBABU VARAGANI 

40 21S11A0492 SIDDARTHA YADAV THOTLA 

41 21S11A0493 SIVA KIRAN AKSHINTALA 

42 21S11A0494 SPANDANA SEEDULA 

43 21S11A0495 SRIRAM SINGARAM 

44 21S11A0496 SRIVANI GEDDADA 

45 21S11A0497 SUDHEER KUMAR TOKALA 

46 21S11A0498 TEJA SRI GURRALA 

47 21S11A0499 THANU SRI REDDY MALLE 

48 21S11A04A0 VAISHNAVI CHEDDE 

49 21S11A04A1 VAMSHI KRISHNA AMARAGONDA 

50 21S11A04A2 VIGNESH VALAGIRI 

51 21S11A04A3 SYED KALEEMULLAH HUSSAIN 

52 21S11A04A4 RICHA MIDDE 



                      SIGNALS & SYSTEMS 
 

14 
  

 
MALLA REDDY INSTITUTE OF TECHNOLOGY & SCIENCE 

ELECTRONICS AND COMMUNICATION  ENGINEERING 

Class: II Year- I Sem Branch: B.Tech-ECE-C 

Batch: 2021-2025 A.Y: 2022-2023 

1 22S15A0401 AJAY SAMMETA 

2 22S15A0402 AKHILA BODIGE 

3 22S15A0403 AKHILA MANGALI 

4 22S15A0404 AMULYA AMBATI 

5 22S15A0405 ASHWINI KENGUVA 

6 22S15A0406 BHARATH JANIGA 

7 22S15A0407 BHARATH KUSAM 

8 22S15A0408 CHANDU GOUD BAZARU 

9 22S15A0409 DEEPAK GANGONI 

10 22S15A0410 GEETHIKA KANDHI 

11 22S15A0411 HARITHA KALYANI VOLETI 

12 22S15A0412 JAYANTH GORINTA 

13 22S15A0413 MADHAVA ERRABOINA 

14 22S15A0414 MANASA ALLURI 

15 22S15A0415 NAGARAJU VAKKALA 

16 22S15A0416 NAVEEN KARANKOT NAGAKAR 

17 22S15A0417 NIKHITH GAJAWADA 

18 22S15A0418 PRAVEEN KUMAR BOLLA 

19 22S15A0419 PRIYAM GOLLACHANNU 

20 22S15A0420 RAJESH THOLEM 

21 22S15A0421 RAJU PIDUGU 

22 22S15A0422 RITHISH REDDY VAKA 

23 22S15A0423 ROHITH KUMAR RANGU 

24 22S15A0424 SAI BHARATH SEERA 

25 22S15A0425 SAI KAMAL POLU DASARI 

26 22S15A0426 SAI SRINIVAS KURAPATI 

27 22S15A0427 SAI VANI TIRUPATI 

28 22S15A0428 SAMPATH KAMERA 
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29 22S15A0429 SHIVA KUMAR MACHKURI 

30 22S15A0430 SHIVA ORSU 

31 22S15A0431 SHIVANI ANKENAPALLY 

32 22S15A0432 SHIVANI MIRYALA 

33 22S15A0433 SHIVANI PADALA 

34 22S15A0434 SHRAVANI MEESALA 

35 22S15A0435 SHRUTHI KADAVERGU 

36 22S15A0436 SRI LEKHA KANDE 

37 22S15A0437 SUBRAMANYAM KOMARTI 

38 22S15A0438 SUMANTH KAVATI 

39 22S15A0439 SUSHIL KUMAR SANDAVENI 

40 22S15A0440 SWAPNA JANNE 

41 22S15A0441 UDAY KIRAN BETHAPUDI 

42 22S15A0442 VENKATESH DASARI 

43 22S15A0443 VYSHNAVI GARIPELLI 

44 22S15A0444 YEJNESWARA SAI SURYA KIRAN NAKKA 
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5.Lesson Plan 
 
Name of the Faculty: G.Haritha               Academic Year: 2022-2023 
Course Number        :     EC304PC                         Course Name  : SIGNALS & SYSTEMS 
Program                   : B.Tech                               Branch                : ECE 
Year/Sem                 : II-I    Section          : A,B, C 
 

Unit 
No. 

Lesson 
No. 

 
No of 
periods 
per 
unit 

No. of 
Periods Topic/Sub Topic 

I 

1 

 
 
 
 
 
 
 
 
 
 
15 

1 Introduction 

1.1 1 Basics of signals 

1.2 1 
Analogy between Vectors and Signals 
 

1.3 1 

Orthogonal Signal Space 
 

1.4 1 

Signal approximation using Orthogonal functions,  
 

1.5 1 

Mean Square Error 
 

1.6 1 

Closed or complete set of Orthogonal functions, 

1.7 1 

Orthogonality in Complex functions,  
 

1.8 1 

Classification of Signals and systems, 

1.9 1 

Exponential and Sinusoidal signals,  
 

1.10 1 

Concepts of Impulse function 
 

1.11 1 

Unit Step function, 
 

1.12 1 

Signum function 
 

1.13 1 

problems 

II 2 

 
 1 

Fourier series: Representation of Fourier series 
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2.1 
 
 
10 
 
 
 
 
 
 
 
 
 
 
10 

1 
Continuous time periodic signals,  
 

2.2 1 Dirichlet’s conditions 

2.3 1 Trigonometric Fourier Series and Exponential Fourier Series,  

2.4 1 

problems 

2.5 2 Complex Fourier spectrum 

2.6 2 Properties of Fourier Series 

2.7 
 1 Fourier Transforms: 

2.8 1 Deriving Fourier Transform from Fourier series, 

2.9 1 Fourier Transform of arbitrary signal 

2.10 1 Fourier Transform of standard signals, 

2.11 1 Fourier Transform of Periodic Signals, 

2.12 1 Properties of Fourier Transform 

2.13 1 Fourier Transforms involving Impulse function and Signum function 

2.14 1 Introduction to Hilbert Transform 

III 

3.1 
1 

Signal Transmission through Linear Systems: Linear System 

3.2 
1 

Impulse response, Response of a Linear System,  
 

3.3 
1 

Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System,  

 

3.4 
2 

Transfer function of a LTI System, Filter characteristic of Linear System 
 

3.5 
1 

Distortion less transmission through a system, Signal bandwidth, System 

3.6 1 
Ideal LPF, HPF, and BPF characteristics, 

3.7 
2 

Causality and Paley-Wiener criterion for physical realization 
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3.8 
1 

Relationship between Bandwidth and rise time,  
 

 
3.9 

 
1 

Convolution and Correlation of Signals, 

 
3.10 

 
1 

Concept of convolution in Time domain and Frequency domain,  
 

 
3.11 

 
1 

problems 

 
3.12 

 
1 

Graphical representation of Convolution 

IV 
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1 

Laplace Transforms: Laplace Transforms (L.T), 

4.1 1 
Inverse Laplace Transform, and Concept of Region of Convergence (ROC) for Laplace Transforms,  

4.2 2 

problems 
 

4.3 1 
Properties of L.T, 

4.4 1 

Relation between L.T and F.T of a signal,  
 

4.5 1 

Z–Transforms: Concept of Z- Transform of a Discrete Sequence,  
 

4.6 1 

Distinction between Laplace, Fourier and Z Transforms,  

 

4.7 1 

Region of Convergence in Z-Transform,  
 

4.8 1 

Constraints on ROC for various classes of signals,  
 

4.9 2 

Solution of differential equations using ZT 
 

4.10 1 

Inverse Z-transform, Properties of Z-transforms 
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Sampling theorem:  

5.1 2 

Graphical and analytical proof for Band Limited Signals  

5.2 1 

Impulse Sampling, Natural and Flat top Sampling, 

5.3 1 

Reconstruction of signal from its samples, 

5.4 1 
Effect of under sampling – Aliasing, Introduction to Band Pass Sampling 

5.5  
Correlation: Cross Correlation and Auto Correlation of Functions, Properties 
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5.6 1 

Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum,  
 

5.7  

Relation between Auto Correlation function and Energy/Power spectral density function, Relation between  

5.8  

Relation between Convolution and Correlation,  

5.9  

Detection of periodic signals in the presence of Noise by Correlation,  
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Extraction of signal from noise by filtering 
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EC304PC: SIGNALS AND SYSTEMS 

B.Tech. II Year I Semester L T P C 

3 1 0 4S 

Course Objectives: 

1. To understand the structure of a computer and its operations. 

2. To understand the RTL and Micro-level operations and control in a computer. 

3. Understanding the concepts of I/O and memory organization and operating systems. 

 
Course Outcomes: 

1. Able to visualize the organization of different blocks in a computer. 

2. Able to use micro-level operations to control different units in a computer. 

3. Able to use Operating systems in a computer. 

 

Unit I :  

Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal 

approximation using Orthogonal functions, Mean Square Error, Closed or complete set of 

Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, 

Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum 

function. 

 
UNIT -II: 

Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of 

Fourier Series, Dirichlet’s conditions, Trigonometric Fourier Series and Exponential Fourier 

Series, Complex Fourier spectrum. 

Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of 

arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, 

Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum 

function, Introduction to Hilbert Transform. 
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Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less 

transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF 
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UNIT - V: 

 

Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, 
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Correlation, Extraction of Signal from Noise by Filtering 

 

TEXT BOOKS:  
 
1.Signals, Systems & Communications - B.P. Lathi, 2013, BSP. 

2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2 Ed. 
 
REFERENCES:  
 
1. Signals and Systems – Simon Haykin and Van Veen, Wiley 2 Ed., 
2. Signals and Systems – A. Rama Krishna Rao, 2008, TMH 

3. Fundamentals of Signals and Systems - Michel J. Robert, 2008, MGH International Edition. 
4. Signals, Systems and Transforms - C. L. Philips, J.M.Parr and Eve A.Riskin, 3 Ed., 2004, PE. 
5. Signals and Systems – K. Deergha Rao, Birkhauser, 2018. 

 
 



                      SIGNALS & SYSTEMS 
 

23 
  

 

UNIT-I 
 

SIGNAL ANALYSIS 
 

 
CONTENTS: 

 
1.1. Introduction. 
1.2. Classification of signals. 
1.3. Standard signals. 
1.4. Operations on signals. 
1.5. Analogy between vectors and signals. 
1.6. Orthogonal signal space. 
1.7. Evaluation of Mean Square Error. 
1.8. Representation of a signal by complete set of orthogonal functions. 
1.9. Orthogonality in complex function 
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Unit- I  
SIGNALS & SYSTEMS 
 

There is a perfect analogy between vectors and signals. 
 

Vector 
A vector contains magnitude and direction. The name of the vector is denoted by bold face type and their 
magnitude is denoted by light face type. 

 
Example: V is a vector with magnitude V. Consider two vectors V1 and V2 as shown in the following diagram. 
Let the component of V1 along with V2 is given by C12V2. The component of a vector V1 along with the vector 
V2 can obtained by taking a perpendicular from the end of V1  to the vector V2 as shown in diagram: 

 

 

The vector V1 can be expressed in terms of vector 

V2 V1= C12V2 + Ve 

Where Ve is the error vector. 
 

But this is not the only way of expressing vector V1 in terms of V2. The alternate possibilities are: 

V1=C1V2+Ve1 

V2=C2V2+Ve2 
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The error signal is minimum for large component value. If C12=0, then two signals are said to be orthogonal. 
 

Dot Product of Two Vectors V1 . V2 = V1.V2 cosθ 
θ = Angle between V1 and V2 V1. V2 =V2.V1 
From the diagram, components of V1 a long V2 = C 12 V2 

 

The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f2(t). 
Similar to vectors, you can approximate f1(t) in terms of f2(t) as f1(t) = C12 f2(t) + fe(t) for (t1 < t 
< t2) 
⇒ fe(t) = f1(t) – C12 f2(t) 

 

One possible way of minimizing the error is integrating over the interval t1 to t2. 
 

 

However, this step also does not reduce the error to appreciable extent. This can be corrected by taking the 
square of error function. 

 

 

Where ε is the mean square value of error signal. The value of C12 which minimizes the error, you need to 
calculate 
dε/dC12=0 
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Derivative of the terms which do not have C12 term are zero. 

 

 

 

Put C12 = 0 to get condition for orthogonality. 
 

 

 
 

 

Orthogonal Vector Space 
 

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider a three dimensional 
vector space as shown below: 
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Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (VX, VY, VZ) in the direction of X, Y, Z 
axis respectively. Since these unit vectors are mutually orthogonal, it satisfies that 

 
 

 

We can write above conditions as 
 

The vector A can be represented in terms of its components and unit vectors as 

 
 

 

Any vectors in this three dimensional space can be represented in terms of these three unit 

vectors only. If you consider n dimensional space, then any vector A in that space can be 

represented as 

 

 

As the magnitude of unit vectors is unity for any vector A The component of A along x axis = A.VX 
The component of A along Y axis = A.VY The component of A along Z axis = A.VZ 

 
Similarly, for n dimensional space, the component of A along some G axis 

 
=A.VG (3) 
Substitute equation 2 in equation 3. 
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Orthogonal Signal Space 
 

Let us consider a set of n mutually orthogonal functions x1(t), x2(t)... xn(t) over the interval t1 to t2. 
As these functions are orthogonal to each other, any two signals xj(t), xk(t) have to satisfy the 
orthogonality condition. i.eLet a function f(t), it can be approximated with this orthogonal signal space 
by adding the components along mutually orthogonal signals i.e. 

 

 
 

 
 

 

The component which minimizes the mean square error can be found by 

 

 
 

 
 
 

All terms that do not contain Ck is zero. i.e. in summation, r=k term remains and all other terms are zero. 
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Mean Square Error: 
 

The average of square of error function fe(t) is called as mean square error. It 

 is denoted by ε (epsilon). 

 
 
  

The above equation is used to evaluate the mean square error. 
 
 

Closed and Complete Set of Orthogonal Functions: 
Let us consider a set of n mutually orthogonal functions x1(t), x2(t)...xn(t) over the interval t1 to t2. This is 
called as closed and complete set when there exist no function f(t) satisfying the condition 

 

 

If this function is satisfying the equation 
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For k=1,2,.. then f(t) is said to be orthogonal to each and every function of orthogonal 

set. This set is incomplete without f(t). It becomes closed and complete set when f(t) is 

included. 

f(t) can be approximated with this orthogonal set by adding the components along mutually orthogonal signals 
i.e. 

 

 
 

 

Orthogonality in Complex Functions: 
 

If f1(t) and f2(t) are two complex functions, then f1(t) can be expressed in terms of f2(t) as 
 

f1(t)=C12f2(t).. with negligible error 

 

 

Where f2*(t) is the complex conjugate of f2(t) If f1(t) and f2(t) are orthogonal then C12 = 0 

 

 

The above equation represents orthogonality condition in complex functions. 
 

Ramp Signal 

 

Ramp signal is denoted by r(t), and it is defined as r(t) =  
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Area under unit ramp is unity. 
 

Parabolic Signal 
 

Parabolic signal can be defined as x(t) =  

 

 
Signum Function 

 

Signum function is denoted as sgn(t). It is defined as sgn(t) = 
 
 

 

sgn(t) = 2u(t) – 1 
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Exponential Signal 

 
Exponential signal is in the form of x(t) = eαt 
.The shape of exponential can be defined by α 
Case i: if α = 0 → x(t) = e0= 1 

 

Case ii: if α< 0 i.e. -ve then x(t) = e−αt 
. The shape is called decaying exponential. 

 

 

Case iii: if α> 0 i.e. +ve then x(t) = eαt 
. The shape is called raising exponential. 

 

 
 

Rectangular Signal 
 

Let it be denoted as x(t) and it is defined as 
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Triangular Signal 
 

Let it be denoted as x(t) 

 

 

Sinusoidal Signal 
Sinusoidal signal is in the form of x(t) = A cos(w0±ϕ) or A sin(w0±ϕ) 

 

Where T0 = 2π/w0 
 

Classification of Signals: 
Signals are classified into the following categories: 

 
 Continuous Time and Discrete Time Signals 
 Deterministic and Non-deterministic Signals 
 Even and Odd Signals 
 Periodic and Aperiodic Signals 
 Energy and Power Signals 
 Real and Imaginary Signals 
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Triangular Signal 
 

Let it be denoted as x(t) 

 

 

Sinusoidal Signal 
Sinusoidal signal is in the form of x(t) = A cos(w0±ϕ) or A sin(w0±ϕ) 

 

Where T0 = 2π/w0 
 

Classification of Signals: 
 

Signals are classified into the following categories: 
 

 Continuous Time and Discrete Time Signals 
 Deterministic and Non-deterministic Signals 
 Even and Odd Signals 
 Periodic and Aperiodic Signals 
 Energy and Power Signals 
 Real and Imaginary Signals 
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Continuous Time and Discrete Time Signals 
 

A signal is said to be continuous when it is defined for all instants of time. 

 

 

A signal is said to be discrete when it is defined at only discrete instants of time/ 

 

 
 

Deterministic and Non-deterministic Signals 
 

A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of 
time. Or, signals which can be defined exactly by a mathematical formula are known as deterministic 
signals. 

 

 

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of 
time. Non-deterministic signals are random in nature hence they are called random signals. Random 
signals cannot be described by a mathematical equation. They are modelled in probabilistic terms. 
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Even and Odd Signals 
 

A signal is said to be even when it satisfies the condition x(t) = x(-t) 
 

Example 1: t2, t4… cost etc. 
 

Let x(t) = t2 
 

x(-t) = (-t)2 = t2 = x(t) 
 

∴ t2 is even function 
Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function. 

 

 

A signal is said to be odd when it satisfies the condition x(t) = -x(-t) 
 

Example: t, t3 ... And sin t Let x(t) = sin 
t x(-t) = sin(-t) = -sin t = -x(t) 

 
∴ sin t is odd function. 

 
Any function ƒ(t) can be expressed as the sum of its even function ƒe(t) and odd function ƒo(t). ƒ(t ) = ƒe(t 
) + ƒ0(t ) 
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ƒe(t ) = ½[ƒ(t ) +ƒ(-t )] 
 

Periodic and Aperiodic Signals 
 

A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N). 
Where T = fundamental time period, 1/T = f = fundamental frequency. 

 

 

 

The above signal will repeat for every time interval T0 hence it is periodic with period T0. 
 

Energy and Power Signals 
 

A signal is said to be energy signal when it has finite energy. 
 

 

A signal is said to be power signal when it has finite power. 

 

 

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy 
nor power signal. 

 

Power of energy signal = 0 Energy of power signal = ∞ 
 

Real and Imaginary Signals 
 

A signal is said to be real when it satisfies the condition x(t) = x*(t) A signal is said to be odd when it 
satisfies the condition x(t) = -x*(t) Example: 
If x(t)= 3 then x*(t)=3*=3 here x(t) is a real signal. 
If x(t)= 3j then x*(t)=3j* = -3j = -x(t) hence x(t) is a odd signal. 
Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part 
should be zero. 
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Basic operations on Signals: 
 

There are two variable parameters in general: 
 

1. Amplitude 
2. Time 

 
(1) The following operation can be performed with amplitude: 

 
Amplitude Scaling 

 
C x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a factor C. 

 

Addition 
 

Addition of two signals is nothing but addition of their corresponding amplitudes. This can be best 
explained by using the following example: 

 

 

As seen from the previous diagram, 
 

-10 < t < -3 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2 
 

-3 < t < 3 amplitude of z(t) = x1(t) + x2(t) = 1 + 2 = 3 3 < t < 10 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2 
 

Subtraction 
 

subtraction of two signals is nothing but subtraction of their corresponding 
amplitudes. This can be best explained by the following example: 
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As seen from the diagram above, 

 
-10 < t < -3 amplitude of z (t) = x1(t) - x2(t) = 0 - 2 = -2 

 
-3 < t < 3 amplitude of z (t) = x1(t) - x2(t) = 1 - 2 = -1 3 < t < 10 amplitude of z (t) = x1(t) - x2(t) = 0 - 2 = -2 

 
 
 

Multiplication 
 

Multiplication of two signals is nothing but multiplication of their corresponding amplitudes. This can 
be best explained by the following example: 

 
 

As seen from the diagram above, 
 

-10 < t < -3 amplitude of z (t) = x1(t) ×x2(t) = 0 ×2 = 0 
-3 < t < 3 amplitude of z (t) = x1(t) - x2(t) = 1 ×2 = 2 3 < t < 10 amplitude of z (t) = x1(t) - x2(t) = 0 × 2 = 0 

 
(2) The following operations can be performed with time: 
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Time Shifting 
 

x(t ±t0) is time shifted version of the signal x(t). x (t + t0) →negative 
shift x (t - t0) →positive shift 

 

 

 

Time Scaling 
 

x(At) is time scaled version of the signal x(t). where A is always positive. 
 

|A| > 1 → Compression of the signal 
 

|A| < 1 → Expansion of the signal 
 
 

 

Note: u(at) = u(t) time scaling is not applicable for unit step function. 
 

Time Reversal 
 

x(-t) is the time reversal of the signal x(t). 
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Classification of Systems: 
 

Systems are classified into the following categories: 
 

 Liner and Non-liner Systems 
 Time Variant and Time Invariant Systems 
 Liner Time variant and Liner Time invariant systems 
 Static and Dynamic Systems 
 Causal and Non-causal Systems 
 Invertible and Non-Invertible Systems 
 Stable and Unstable Systems 

 
 

Linear and Non-linear Systems 
 

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two 
systems with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the 
superposition and homogenate principles, 

 
T [a1 x1(t) + a2 x2(t)] = a1 T[x1(t)] + a2 T[x2(t)] 

 
∴ T [a1 x1(t) + a2 x2(t)] = a1 y1(t) + a2 y2(t) 
From the above expression, is clear that response of overall system is equal to response of individual system. 

 
Example: 

 
y(t) = x2(t) Solution: 
y1 (t) = T[x1(t)] = x12(t) 

 
y2 (t) = T[x2(t)] = x22(t) 

 
T [a1 x1(t) + a2 x2(t)] = [ a1 x1(t) + a2 x2(t)]2 

 
Which is not equal to a1 y1(t) + a2 y2(t). Hence the system is said to be non linear. 

 
Time Variant and Time Invariant Systems 

 
A system is said to be time variant if its input and output characteristics vary with time. 
Otherwise, the system is considered as time invariant. The condition for time invariant 
system is: y (n , t) = y(n-t) 

 
The condition for time variant system 
is: y (n , t) ≠ y(n-t) 

 
 

Where y (n , t) = T[x(n-t)] = input 

change y (n-t) = output change 
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Example: 
 

y(n) = x(-n) 
 

y(n, t) = T[x(n-t)] = x(-n-t) 
 

y(n-t) = x(-(n-t)) = x(-n + t) 
 

∴ y(n, t) ≠ y(n-t). Hence, the system is time variant. 
 

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems 
 

If a system is both liner and time variant, then it is called liner time variant (LTV) system. 
 

If a system is both liner and time Invariant then that system is called liner time invariant (LTI) system. 
 

Static and Dynamic Systems 
 

Static system is memory-less whereas dynamic system is a memory system. 
 

Example 1: y(t) = 2 x(t) 
 

For present value t=0, the system output is y(0) = 2x(0). Here, the output is only dependent upon present 
input. Hence the system is memory less or static. 

 
Example 2: y(t) = 2 x(t) + 3 x(t-3) 

 
For present value t=0, the system output is y(0) = 2x(0) + 3x(-3). 

 
Here x(-3) is past value for the present input for which the system requires memory to get this output. 
Hence, the system is a dynamic system. 

 
Causal and Non-Causal Systems 

 
A system is said to be causal if its output depends upon present and past inputs, and does not depend 
upon future input. 

 
For non causal system, the output depends upon future inputs also. 

 
Example 1: y(n) = 2 x(t) + 3 x(t-3) 

 
For present value t=1, the system output is y(1) = 2x(1) + 3x(-2). 

 
Here, the system output only depends upon present and past inputs. Hence, the system is causal. 

 
Example 2: y(n) = 2 x(t) + 3 x(t-3) + 6x(t + 3) 

 
For present value t=1, the system output is y(1) = 2x(1) + 3x(-2) + 6x(4) Here, the system output 
depends upon future input. Hence the system is non-causal system. 

 
Invertible and Non-Invertible systems 
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A system is said to invertible if the input of the system appears at the output. 
 
 

 
 
 

 
Y(S) = X(S) H1(S) H2(S) 

 
= X(S) H1(S) · 1(H1(S)) 

 
Since H2(S) = 1/( H1(S) ) 

 
∴ Y(S) = X(S) 

 
→ y(t) = x(t) 
Hence, the system is invertible. 

 
If y(t) ≠ x(t), then the system is said to be non-invertible. 
Stable and Unstable Systems 

 
The system is said to be stable only when the output is bounded for bounded input. For a bounded 
input, if the output is unbounded in the system then it is said to be unstable. 

 
Note: For a bounded signal, amplitude is finite. 

 
Example 1: y (t) = x2(t) 

 
Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded 

output. Hence, the system is stable. 

 
Example 2: y (t) = ∫x(t)dt 
Let the input is u (t) (unit step bounded input) then the output y(t) = ∫u(t)dt = ramp signal (unbounded 
because amplitude of ramp is not finite it goes to infinite when t → infinite). 
Hence, the system is unstable. 
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x[0] 
 

 
x[-1] x[1] 

x[-2] x[2] 

-5      -4     -3 3     4 5 

-2      -1    0 1 2 

1.1  
Continuous-time and discrete-time Signals 

1.1.1 Examples and Mathematical representation 
 

Signals are represented mathematically as functions of one or more independent variables. Here 
we focus attention on signals involving a single independent variable. For convenience, this will 
generally refer to the independent variable as time. 

 
 
There are two types of signals: continuous-time signals and discrete-time signals. 

 

Continuous-time signal: the variable of time is continuous. A speech signal as a function of 
time is a continuous-time signal. 

 
Discrete -time signal: the variable of time is discrete. The weekly Dow Jones stock market 
index is an example of discrete-time signal. 

 
x(t) x[n] 

 
 
 
 
 

 

t n 

 

 

Fig. 1.1 Graphical representation of 
continuous- time signal. 

Fig. 1.2 Graphical representation of discrete-
time signal
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1.1.2 Signal Energy and Power 
 

If v(t) and i(t) are respectively the voltage and current across a resistor with resistance 

R , then the instantaneous power is 

p(t)  v(t)i(t)  
1 

v 2 (t) . (1.1) 

R 
 

The total energy expended over the time interval t1  t  t2 is 


t2   

p(t)dt 
t2    1 

v 2 (t)dt , (1.2) 
t1 t1 R 

 

and the average power over this time interval is 

1 


t2   

p(t)dt  
1 


t2   1 

v 2 (t)dt . (1.3) 

t2  t1 t1 t2  t1 t1 R 

For any continuous-time signal x(t) or any discrete-time signal x[n], the total energy 

over the time interval t1  t  t2 in a continuous-time signal x(t) is defined as 
 

t2 

x(t) 
1 

dt , (1.4) 

 

where x denotes the magnitude of the (possibly complex) number x . The time-averaged power 
1 t 

is  
2 

x(t) 2 dt . Similarly the total energy in a discrete-time 
signal 

x[n] over the time 

t2  t1   t1
 

interval n1  n  n2 is defined as 
 

n2 

 x[n] 2 
n1 

 
(1.5) 

 

1 n2  2 

The average power is 
n
2 
 n

1 

 x[n] 
n1



t 

 1 

2 



                      SIGNALS & SYSTEMS 
 

46 
 


1 

 discrete time 
 

E
 N 

 lim x[n] 
2

 

N  
 N

 



  x[n] 
2

 





. (1.7) 

 

For some signals, the integral in Eq. (1.6) or sum in Eq. (1.7) might not converge, that is, if 

x(t) or x[n] equals a nonzero constant value for all time. Such signals have infinite energy, 

while signals with E   have finite energy. 

The time-averaged power over an infinite interval 
 

P  lim 1 


T 
2 

x(t) 
dt 

(1.8) 

T  2T T 
 

P  lim  N 2 x[n] (1.9) 
    

N  2N  1 N 
 

Three classes of signals: 

 
 Class 1: signals with finite total energy, E   and zero average power, (Energy Signal) 

 

P  lim 
E  0 

 
T  2T 

 
(1.10) 

 

 Class 2: with finite average power P. If P  0 , then E   . An example is the signal 

x[n]  4 , it has infinite energy, but has an average power of P =16. (Power Signal) 

Class 3: signals for which neither P and E are finite. An example of this signal is x(t)  t . 

 

1.2 Transformations of the independent variable 
 

In many situations, it is important to consider signals related by a modification of the 
independent variable. These modifications will usually lead to reflection, scaling, and shift. 

 

1.2.1 Examples of Transformations of the Independent Variable 
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n0 

x[n] x[n-n 0] 

 
 
 
 
 

 
n n 

 

 (b) 
 

 
 
 

x(t) 

Fig.1.3 Discrete-time signals related by a time shift. 
x(t-t0) 

 
 
 
 
 
 

t 

t 
t0 

 

Fig. 1.4 Continuous-time signals related by a time shift. 

 
x[n] x[-n]  

 
 
 
 
 

 

n n 

 

(a) (b) 
 

Fig. 1.5 (a) A discrete-time signal x[n]; (b) its reflection, x[n] about n  0 . 

 
x(t) x(-t) 

 
 
 
 
 
 
 

0 

(a) 

 
t t 

0 

(b) 

 
Fig. 1.6 (a) A continuous-time signal 
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x(t) ; (b) 
itsreflection, 
x(t) about t  0 
. 

x(t) 

 
x(2t) 

 
 
 
 
 
 

 

(a) 

 
t 

 
 

x(t/2) 

 
 
 
 
 
 
 
 

 
0 

 
 
 
 
 
 
 
 
 
 

(c
) 

t 

0 

(b) 

 
 
 
 
 
 

t 

 

Fig. 1.7 Continuous-time signals related by time scaling. 
 
 

1.1.1 Periodic Signals 
 

A periodic continuous-time 

signal which 

x(t) has the property that there is a positive value of T for 

 

x(t)  x(t  T ) for all t (1.11) 

 
From Eq. (1.11), we can deduce that if x(t) is periodic with period T, then x(t)  x(t  mT ) 

for all t and for all integers m . Thus, x(t) is also periodic with period 2T, 3T, …. The 

fundamental period T0 of x(t) is the smallest positive value of T for which Eq. (1.11) holds. 

x(t) 
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t 

 

Fig. 1.8 Continuous-time periodic signal. 

 

A discrete-time 

signal by a time shift 

of N, 
 

x[n]  x[n  N] 

x[n] is periodic with period N , where N is an integer, if it is 
unchanged 

 
 

 
(1.12) 

 

for all values of n. If Eq. (1.12) holds, then x[n] is also periodic with period 2N , 3N , …. 

The fundamental period N0 is the smallest positive value of N for which Eq. (1.12) holds. 

 
x[n] 

 
 
 
 

n 
 
 
 
 
 

Fig. 1.9 Discrete-time periodic signal. 
 
 

1.1.1 Even and Odd Signals 
 

In addition to their use in representing physical phenomena such as the time shift in a radar signal 
and the reversal of an audio tape, transformations of the independent variable are extremely 
useful in examining some of the important properties that signal may possess. 

 
Signal with these properties can be even or odd signal, periodic signal: 

 
An important fact is that any signal can be decomposed into a sum of two signals, one of which is 
even and one of which is odd. 

 
x(t) 

x(t) 

...... ...... 

...... ...... 
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 
,
 

0  

 

EV x[ n] 

 1, 
 1 

 

 

 

  , 
 2 



 
 
 
 

t 

 
 

t 

0 

(a) 

 
 

(b) 

 

Fig. 1.10 An even continuous-time signal; (b) an odd. 

EVx(t) 
1 
x(t) x(t)

2 

 
(1.13) 

 

which is referred to as the even 
partof 

 

ODx(t)
 1 

x(t)  x(t)
2 

x(t). Similarly, the odd part of x(t) is given by 

 

(1.14
) 

 

Exactly analogous definitions hold in the discrete-time case. 
 
 

x[n] x[n]  
1,

 
n  0 

0 

 
 
 
 

n 

 

x[n] 

 

 1 

 2 
, 

 

n  0 
 

n  0 

n  0 

 

 
n 

 
 
 

(a) (b) 
 

x[n] 

 

1 
,    n  0 

  2 

n  0 

n  0 

 
n 

 
 

(c) 

0 

ODx[n] 



 
 0, 


 

1 

2 
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Fig.1.11 The even-odd decomposition of a discrete-time signal. 

 
 

1.2 Exponential and sinusoidal signals 
 

1.2.1 Continuous-time complex exponential and sinusoidal signals 
 

The continuous-time complex exponential signal 

 
x(t)  Ceat (1. 15) 

 
where C and a are in general complex numbers. 

. 
x(t)  Ceat (1. 15) 

 
where C and a are in general complex numbers. 

 

Real exponential signals 

 
x(t) x(t) 

 
 
 
 
 
 

 

t t 

 

 (b) 

Fig. 1.12 The continuous-time complex exponential signal x(t)  Ceat , (a) a  0 ; (b) a  0 . 

 

Periodic complex exponential and sinusoidal signals 
 

If a is purely imaginary, we have 

 
x(t)  e j0 t (1.16) 

 

An important property of this signal is that it is periodic. We 
know 

T if 

x(t) is periodic with period 
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

0
 
0 

 

e j0t  e j0 ( tT )  e j0 t e j0T (1.17) 

For periodicity, we must have 

 
e j0T 

 1 (1.18) 

For  0  0 , the fundamental period T0 

is 2
T0  (1.19) 

0 
 
 

Thus, the signals  e j0 t   and  e j0 t have the same fundamental period. 

A signal closely related to the periodic complex exponential is the sinusoidal signal 
 

x(t)  A cos(0t  ) (1.20) 

 
With seconds as the unit of t, the units of  and 0 are radians and radians per second. It is 

also known  0  2f 0 , where f0 has the unit of circles per second or Hz. 
 

The sinusoidal signal is also a periodic signal with a fundamental period of T0 . 

 
x( t)  A cos( 0t   ) 

 
 
 
 
 

 
t 

 
 
 
 

Fig. 1.13 Continuous-time sinusoidal signal. 
 

Using Euler‟s relation, a complex exponential can be expressed in terms of sinusoidal signals 
with the same fundamental period: 

 
e j0 t   

 cos  t   j sin  t (1.21) 

 
Similarly, a sinusoidal signal can also be expressed in terms of periodic complex exponentials 
with the same fundamental period: 

 

Acos( t  )  A  j 
j0 t 

A  j  j0 t (1.22) 

T  
2

 


 

 

A cos
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0 

0 

   e e     e e 
0 2 2 

A sinusoid can also be expresses as 

Acos( t  )  ARee j (0t  )  (1.23) 

and 

Asin( t   )  A Ime j(0 t )  (1.24) 

Periodic signals, such as the sinusoidal signals provide important examples of signal with 
infinite total energy, but finite average power. For example: 

 

E  
T0 

e j0 t dt 
T0 

1dt  T (1.25) 

period 0 0 0 

 

 

Pperiod 
0 

T0 

e j0t dt 


0 

T0 

1dt  1 
0 

(1.26) 




1 

T 
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k 



Since there are an infinite number of periods as t ranges from   to   , the total 
energy integrated over all time is infinite. The average power is finite since 

P    lim 
1 T 

e j t 
2 

dt 1 (1.27) 

 
T 




0 

2T T 

Harmonically related complex exponentials: 
 

 (t)  e jk0 t , k  0,  1, 2,...... (1.28) 

 
0 is the fundamental frequency. 

 

Example: 
 

Signal x(t)  e j 2t  e j 3t can be expressed as x(t)  e j 2.5t (e  j 0.5t  e j0.5t )  2e j 2.5t cos(0.5t) , 

the magnitude of x(t) is x(t)  2 cos(0.5t) , which is commonly referred to as a full-

wave rectified sinusoid, shown in Fig. 1.14. 

 
 
 
 
 
 
 
 

 
t 

 

Fig. 1.14 Full-wave rectified sinusoid. 
 

General complex Exponential 
signals 

 
Consider a complex exponential Ce at , where C  C e 
j

expressed in rectangular form. Then 

 
 

It is expressed in polar and a  r  j0 is 

 

Ce at  C e j e(r j0 )t 
 C ert e j (0t ) 

 C ert cos(0t   )  j C e rt sin(0t   ) . (1.29) 

Thus, for r  0 , the real and imaginary parts of a complex exponential are sinusoidal. 
For r  0 , sinusoidal signals multiplied by a growing exponential. 

 

 

 4  2 0 2 4



                      SIGNALS & SYSTEMS 
 

55 
 

x(t) x(t) 

 
 

 
t t 

 
 

 

(a) (b) 
 

Fig. 1.15 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 

 
1.2.2 Discrete-time complex exponential and sinusoidal signals 

 
A discrete complex exponential or sequence is defined by 

 
x[n]  C n , (1.30) 

 
where C and  are in general complex numbers. This can be alternatively expressed 

 
x[n]  Cen , (1.31) 

where   e  . 

Real Exponential Signals 
 

If C and  are real, we have the real exponential signals. 

 
x[n] x[n] 

 
 
 
 

 
n n 

 

 

 
x[n] 

(a) (b
) 

 
 

x[n] 

 
 
 
 
 

n n 
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0 0 

0 

0 

Fig. 1.16 Real Exponential Signal x[n]  C n : (a)  >1; (b) 0< <1; (c) –1< <0; (d)  <-1. 
 

Sinusoidal 
Signals 

 
x[n]  e j0 n

 

 
e j0 n 

 cos n  j sin n 

 

 
(1.32) 

 
(1.33) 

 

Similarly, a sinusoidal signal can also be expresses in terms of periodic complex exponentials 
with the same fundamental period: 

 

Acos( n  )  A
e j e j0n  

A
e  j e j0 n (1.34) 

0 2 2 

A sinusoid can also be expresses as 

Acos( n  )  ARee j( 0 n)  (1.35) 

and 

Asin( n  )  AIme j(0n )  (1.36) 

The above signals are examples of discrete signals with infinite total energy, but finite 

average power. For example: every sample of   x[n]  e j0 n    contributes 1 to the signal‟s energy. 

Thus the total energy    n   is infinite, while the average power is equal to 1. 
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Fig.1.17 Discrete-time sinusoidal signal. 

 
 

General Complex Exponential Signals 
 

Consider a complex exponential C n , where C  C e j and      e j0  , then 

 
C n  C  n cos( n   )  j C  n sin j( n   ) . (1.37) 

0 0 

 

Thus, for   1, the real and imaginary parts of a complex exponential are sinusoidal. 

For 

For 

 1, sinusoidal signals multiplied by a decaying exponential. 

 1, sinusoidal signals multiplied by a growing exponential. 
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0 

 

(a) (b) 
 

Fig. 1.18 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 
 

1.2.3 Periodicity Properties of Discrete-Time Complex Exponentials 
 

There are a number of important differences between continuous-time and discrete-

time sinusoidal signals. The continuous-time signals e j0 t    are 

distinct for distinct values of   . For discrete-time signals, however, these 

values are not distinct because the signal with 0 is identical to the signals with frequencies  0 

 2 ,  0  4 , and so on, 

 
e j (0 2 ) n    e j(0 4 ) n    e j0 n . (1.38) 

In considering discrete-time exponentials, we need only consider a frequency interval of 

2 . In most occasions, we will use the interval 0  0  2 or    0   . 
 

The discrete-time signal   x[n]  e j0 n    does not have a continuously increasing rate of 

oscillation as 0 is increased in magnitude, but as 0 is increased from 0, the signal oscillates 

more and more rapidly until 0 reaches  , and when 0 is continuously increased, the rate 

of oscillation 
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0 

decreases until 0 reaches 2 . We conclude that the low-frequency discrete-time 

exponentials have values of 0 near 0, 2 , and any other even multiple of  , while the high-

frequencies are located near 0   and other odd multiples of  . 

 
In order for the signal  x[n]  e j0 n   to be periodic with period  N  0 , we must have 

 
e j0 (n  N )  ej0 n , (1.39) 

or equivalently 

 
e j0 N   

 1. (1.40) 
 

For Eq. (1.40) to hold,  
0N 

that 

must be a multiple of 2 . That is, there must be an integer m such 

 

 0 N  2m , (1.41) 
or equivalently 

 0   
m 

. (1.42) 

2 N 
 

From Eq. 
(1.40), 

otherwise. 

x[n]  e j0 n    is a periodic  if    / 2  is a rational number and is not periodic 

 

The fundamental frequency of the discrete-time signal  x[n]  e j0 n is 

2 
 
0   , (1.43) 

N m 
 

and the fundamental period of the signal can be 
 2 

N  
m



. (1.44) 






  0 

The comparison of the continuous-time and discrete-time signals are summarized in the table below: 
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k 

k  N k 

Table 1 Comparison of the signals e j0 t    and  e j0n . 
 

 

e j0 t 

Distinct signals for distinct values of 

0 

e j 0n 

Identical signals for values of 0

 separate

d by multiples of 2


Periodic for any choice of 0 Periodic   only   if    0  2m / N for some 

integers N  0 and m . 
Fundamental 

frequency0 Fundamental 

period 
 0  0 : undefined 

Fundamental frequency  0 / m 

Fundamental period 
 0  0: undefined 

 0  0 :   2 
  0 :   m


 2 







 0 
0 








Example : Suppose that we wish to determine the fundamental period of the discrete-time signal 
 
 

x[n]  e j ( 2 / 3) n  e j( 3 / 4 )n (1.45) 

 

Solution: 
 

The first exponential on the right hand side has a fundamental period of 3. The second 
exponential has a fundamental period of 8. 

 
For the entire signal to repeat, each of the terms in Eq. (1.45) must go through an integer 
number of its own fundamental period. The smallest increment of n the accomplished this is 24. 
That is, over an interval of 24 points, the first term will have gone through 8 of its fundamental 
periods, and the second term through three of its fundamental periods, and the overall signal 
through exactly one of its fundamental periods. 

 

Harmonically related periodic exponentials 
 

 [n]  e jk ( 2 / N ) n , k  0,  1, ...... (1.46) 
In the continuous-time case, all of the harmonically related complex exponentials e jk ( 2 / N )t , 
k  0,  1,   , are distinct. But this is not the case for discrete-time signals: 

 

 [n]  e j( k N )(2 / N )n  e j( k 2 / N )ne j 2n   [n](1.47) There are only N distinct period 

exponentials in the set given in Eq. (1.46). 


0 
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



1.3 The Unit Impulse and Unit Step Functions 
 

The unit impulse and unit step functions in continuous and discrete time are considerably 
important in signal and system analysis. 

 

1.3.1 The discrete-Time Unit Impulse and Unit Step Sequences 
 

Discrete-time unit impulse is defined as 
 

 [n]  
0,

 
 

1, 

n  0 
, (1.48) 

n  0 

 
 [n] 

 
 
 

n 
 

Fig. 1.19 Discrete-time unit impulse. 
 

Discrete-time unit step is defined as 
 
 

u[n]  
0,

 
 

1, 

n  0 
, (1.49) 

n  0 

 
 

u [ n] 
 
 
 

n 
0 

 
Fig. 1.20 Discrete-time unit step sequence. 

 

The discrete-time impulse unit is the first difference of the discrete-time step 
 

 [n]  u[n]  u[n  1], (1.50) 
 

The discrete-time unit step is the running sum of the unit sample: 

1 
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

t 

n 

u[n]   [m] , (1.51) 
m



It can be seen that for n  0 , the running sum is zero, and for n  0 , the running sum is 1. 
 



If we change the variable of summation from m to k  n  m we have, u[n]   [n  k] . 
k0 

 

The unit impulse sequence can be used to sample the value of a signal at n  0 . Since  [n] is 

nonzero only for n  0 , it follows that 

x[n] [n]  x[0][n] . (1.52) 

 
More generally, a unit impulse  [n  n0 ] , then 

 
x[n][n  n0 ]  x[n0 ][n  n0 ] (1.53) 

 
This sampling property is very important in signal analysis. 

 

1.3.2 The Continuous-Time Unit Step and Unit Impulse Functions 
 

Continuous-time unit step is defined as 
 

u(t)  
0,

 
 

1, 

t  0 
, (1.54) 

t  0 

 
 
 
 
 

 

t 
0 

 

Fig. 1.21 Continuous-time unit step function. The continuous-time unit 

step is the running integral of the unit impulse 

u(t)   
 ( )d . (1.55) 

The continuous-time unit impulse can also be considered as the first derivative of the 
continuous- time unit step, 

u 
(t) 

1 
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



 (t)  
du(t) 

. (1.56) 

dt 
 

Since u(t) is discontinuous at t  0 and consequently is formally not differentiable. This can be 

interpreted, however, by considering an approximation to the unit step u  (t) , as 
illustrated in the figure below, which rises from the value of 0 to the value 1 in a short time 
interval of length  . 

 
 

u   (t ) 
  (t )

 

 
 
 
 
 
 

 

t t 
0    0 

 (b) 

 
Fig. 1.22 (a) Continuous approximation to the unit step u  (t) ; (b) Derivative of u  (t) . 

 

The derivative is 

 (t)  
du (t) 

, (1.57) 
 dt 


 

1 
, 

  (t)  

0, 

 
0  t  

otherwis
e 

 
 
, (1.58) 

 

as shown in Fig. 1.22. 

 
Note that   (t) is a short pulse, of duration  and with unit area for any value of  . As   0 , 

  (t) becomes narrower and higher, maintaining its unit area. At the limit, 

 (t)  lim
 

(t) , (1.59) 
0 

 

u(t)  limu
 

(t) , (1.60) 
0 

 

1 
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k 

 (t)  
du(t) 

. (1.61) 

dt 
 

Graphically,  (t) is represented by an arrow pointing to infinity at t  0 , “1” next to 
the arrow represents the area of the impulse. 

 
 

 (t) k (t ) 
 
 
 
 
 

t t 
0 0 

 

Fig. 1.23 Continuous-time unit impulse. 
 

Sampling property of the continuous-time unit 
impulse: 

 

x(t) (t)  x(0) (t) , 
 

(1.62) 

Or more generally, 
  

x(t) (t  t0 )  x(t0 ) (t  t0 ) 
 

(1.63) 

Example: 
  

Consider the discontinuous signal x(t)  
x (t ) 

 

 
x (t ) 

 

 

t 
 
 
 
 
 
 
 
 
 

Fig. 1.24 The discontinuous signal and its derivative. 

1 

 

 
 

 
 

 

 

 

 

 
 

 

-1 

 -2 

-3 
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Note that the derivative of a unit step with a discontinuity of size of k gives rise to an impulse of area 
k at the point of discontinuity. 

 
 

1.4 Continuous-Time and Discrete-Time Systems 
 

A system can be viewed as a process in which input signals are transformed by the system or 
cause the system to respond in some way, resulting in other signals as outputs. 

 

Examples 
 

R 

 

 
vs (t ) 

+ 

v0 (t ) 

- 
 

(a) 
 
 
 

(t ) 
 

 

(a) 

 
Fig. 1. 25 Examples of systems. (a) A system with input voltage vs (t) and output voltage v0 (t) . 

 A system with input equal to the force f (t)and output equal to the velocity v(t) . 
 

A continuous-time system is a system in which continuous-time input signals are applied and 
results in continuous-time output signals. 

 
 

x(t ) y (t ) 

 
 

A discrete-time system is a system in which discrete-time input signals are applied and 
results in discrete-time output signals. 

 
 

x[n ] y[n] 

 

 C 

 

 

Discrete-time 

system 

Continuous-time 

system 
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models the fact that we accrue 1% interest each 
month. 

 

 

1.5.2 Simple Examples of Systems 
 

Example 1: Consider the RC circuit in Fig. 25 (a). 

 
The current i(t) is proportional to the voltage drop across the resistor: 

i(t)  
vs (t)  vC (t) 

. (1.64) 

R 
 

The current through the capacitor is 
 

i(t)  C 
dvC (t) 

. (1.65) 

dt 
 

Equating the right-hand sides of Eqs. 1.64 and 1.65, we obtain a differential equation 
describing the relationship between the input and output: 

dvC (t) 
 

1 v (t)  
1 

v (t) , (1.66) 
dt RC C RC s 

 

Example 2: Consider the system in Fig. 25 (b), where the force f (t) as the input and the velocity 

v(t) as the output. If we let m denote the mass of the car and v the resistance due to friction. 

Equating the acceleration with the net force divided by mass, we obtain 

dv(t) 
 

1 
f (t)  v(t)  

dv(t) 
 
 

v(t)  
1   f (t) . (1.67) 

dt m dt m m 
 

Eqs.1.66 and 1.77 are two examples of first-order linear differential equations of the form: 
 

dy(t) 
 ay(t)  bx(t). (1.66) 

dt 
 

Example 3: Consider a simple model for the balance in a bank account from month to 

month. Let y[n] denote the balance at the end of nth month, and suppose that y[n] evolves 

from month to month according the equation: 
 

y[n]  1.01y[n  1]  x[n], (1.67) 
 

or 
 

y[n]  1.01y[n  1]  x[n] , (1.68) 
where x[n] is the net deposit (deposits minus withdraws) during the nth month 1.01y[n  1] 
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System1 
 

System1 

Example 4: Consider a simple digital simulation of the differential equation in Eq. (1.67), in 

which we resolve time into discrete intervals of length  and 

approximate by the first backward difference, i.e., 
 

v(n)  v((n  1)) 
 

 



dv(t) / d (t) at t  n



Let v[n]  v(n) and f [n]  f (n) , we obtain the following discrete-time model relating 

the sampled signals v[n] and f [n], 
 

v[n]  
m

 
(m  
) 

v[n 1]  
∆

 
(m  
) 

 

f [n] . (1.69) 

 

Comparing Eqs. 1.68 and 1.69, we see that they are two examples of the first-order linear 
difference equation, that is, 

 
 

y[n]  ay[n  1]  bx[n] . (1.70) 

 

Some conclusions: 
 

 Mathematical descriptions of systems have great deal in common; 
 A particular class of systems is referred to as linear, time-invariant systems. 

 Any model used in describing and analyzing a physical system represents an idealization 
of the system. 

 

1.5.3 Interconnects of Systems 
 

 

Input Output 
 
 

(a) 
 
 
 
 

+ 
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Input 

 
 
 
 

 
  
 
 

 

Input Output 

 
 

 

  
 

Fig. 1.26 Interconnection of systems. (a) A series or cascade interconnection of two systems; 
(b) A parallel interconnection of two systems; (c) Combination of both series and parallel 
systems. 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 
 

System1 

+ 

 

System 3 

System 2 
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

 

1.5 Basic System Properties 
 

1.5.1 Systems with and without Memory 
 

A system is memoryless if its output for each value of the independent variable as a given 
time is dependent only on the input at the same time. For example: 

 
y[n]  (2x[n]  x2 [n])2 , (1.71) 

 
is memoryless. 

 
A resistor is a memoryless system, since the input current and output voltage has the relationship: 

i(t ) 

v(t)  Ri(t) , 
 

where R is the 
resistance. 

+ 

v(t ) 

   - 

(1.72) 

 

One particularly simple memoryless system is the identity system, whose output is 
identical to its input, that is 

 

y(t)  x(t) , or y[n]  x[n] 
 

An example of a discrete-time system with memory is an accumulator or summer. 
 

n 

y[n]   x[k] 
k 

n 1 

x[k ]  x[n]  y[n  1]  x[n], or (1.73) 
k 



y[n]  y[n 1]  x[n] . (1.74) 
 

Another example is a delay 
 

y[n]  x[n 1]. (1.75) 
 

A capacitor is an example of a continuous-time system with memory, 

i(t ) 

v(t)   
1 


t     

i()d, 
+ 

(1.76) 

C  v(t ) 

- 
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y[n] Inverse 

system 

 

System 

where C is the capacitance. 
 

1.5.2 Invertibility and Inverse System 
 

A system is said to be invertible if distinct inputs leads to distinct outputs. 
 

 

x[n] w[n]=x[n] 
 
 
 

 
x(t) 

 

y(t) 
 

 
w(t)=x(t) 

 
 
 

 

x[n] w[ n]  x[n ] 

 
 

Fig. 1.29 Concept of an inverse system. 
 

Examples of non-invertible systems: 
 

y[n]  0 , 

 
the system produces zero output sequence for any input sequence. 

 
y(t)  x 2 (t) , 

 
in which case, one cannot determine the sign of the input from the knowledge of the output. 

 
Encoder in communication systems is an example of invertible system, that is, the input to the 
encoder must be exactly recoverable from the output. 

 

1.5.3 Causality 
 

A system is causal if the output at any time depends only on the values of the input at present 
time and in the past. Such a system is often referred to as being nonanticipative, as the system 
output does not anticipate future values of the input. 

 
The RC circuit in Fig. 25 (a) is causal, since the capacitor voltage responds only to the present 
and past values of the source voltage. The motion of a car is causal, since it does not anticipate 
future actions of the driver. 

y(t) 
 



 

n 

 

w(t)=0.5y(t) 
 

y(t)=2x(t) 
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The following expressions describing systems that are not causal: 
 

y[n]  x[n]  x[n  1], (1.77) 
 

and 
 

y(t)  x(t  1) . (1.78) 
 

All memoryless systems are causal, since the output responds only to the current value of input. 
 

Example : Determine the Causality of the two systems: 
 

(1) y[n]  x[n] 

(2) y(t)  x(t) cos(t  1) 

 
Solution: System (1) is not causal, since when n  0 , e.g. n  4 , we see that y[4]  x[4], so 

that the output at this time depends on a future value of input. 
 

System (2) is causal. The output at any time equals the input at the same time multiplied by a 
number that varies with time. 

 

1.5.4 Stability 
 

A stable system is one in which small inp uts leads to responses that do not diverge. More 
formally, if the input to a stable system is bounded, then the output must be also bounded and 
therefore cannot diverge. 

 
 

Examples of stable systems and unstable systems: 

 
R 

 

 

vs (t ) 

 
 

 
- 

 

(a) 

+ 

 
 
 
 

(b) 

 
 

(t ) 

 

The above two systems are stable system. 
 

 

The 
accumulator 

bounded. 

n 

y[n]   x[k ] is not stable, since the sum grows continuously 

even if 
k 



x[n] is 

+ 

-  
i(t
) 

v0 ( 
t)  



                      SIGNALS & SYSTEMS 

 

 

Check the stability of the two systems: 
 

 S1; 

 S2: 

y(t)  tx(t); 

y(t)  ex(t ) 

 

 S1 is not stable, since a constant input x(t)  1, yields y(t)  t , which is not bounded – 

no matter what finite constant we pick, y(t) will exceed the constant for some t. 

 

 S2 is stable. Assume the input is 

bounded that y(t) is bounded e B  y(t)  

e B . 

 
1.5.5 Time Invariance 

x(t)  B , or  B  x(t)  B for all t. We then see 

 

A system is time invariant if a time shift in the input signal results in an identical time 

shift in the output signal. Mathematically, if the system output isy(t) when the input is x(t) 

, a time- invariant system will have an outputof y(t  t0 ) when input is x(t  t0 ) . 

Examples: 
 

 The system y(t)  sin[x(t)] is time invariant. 

 
 The system y[n]  nx[n] is not time invariant. This can be demonstrated by using 

counterexample. Consider the input signal x1 [n]   [n] , which yields y1[n]  0 . 

However, the input x2 [n]   [n 1] yields the output y2 [n]  n [n 1]   [n  1] . Thus, 

while x2 [n] is the shifted version of x1 [n], y2 [n] is not the shifted version of y1[n] . 

 

 The system y(t)  x(2t ) is not time invariant. To check using counterexample. Consider 

x1 (t) shown in Fig. 1.30 (a), the resulting output y1 (t) is depicted in Fig. 1.30 (b). If the 

input is shifted by 2, that is, consider x2 (t)  x1 (t  2) , as shown in Fig. 1.30 (c), we 

obtain the resulting output y2 (t)  x2 (2t ) shown in Fig. 1.30 (d). It is 

clearly seen that 

y2 (t)  y1 (t  2) , so the system is not time invariant. 
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x1 (t ) y1 (t ) x 2 (t )  x1 (t  2) 

 
 

 
1 

 
 

 
1 

 
 

1 

 

         

-2 2 -1 1 0 4 

 (b) (c) 

y2 (t ) y 2 (t  2 ) 

  
 
 
 
 
 

1.5.6 Linea
rity 

0 2 1 3 

 (e) 
 

Fig. 1.30 Inputs and outputs of the system y(t)  x(2t) . 

 

The system is linear if 
 

 The response to x1 (t)  x2 (t) is y1 (t)  y2 (t) - additivity property 

 The response to ax1 (t) is ay1 (t) - scaling or homogeneity property. 

The two properties defining a linear system can be combined into a single statement: 
 

 Continuous time: ax1 (t)  bx2 (t)  ay1 (t)  by2 (t) , 

 Discrete time: ax1 [n]  bx2 [n]  ay1 [n]  by2 [n]. 

 
Here a and b are any complex constants. 

 
Superposition property: If xk [n], k  1, 2, 3, ... are a set of inputs with corresponding outputs 

yk [n], k  1, 2, 3, ... , then the response to a linear combination of these inputs given by 

 
x[n]   ak xk [n]  a1 x1[n]  a2 x2 [n]  a3 x3 [n]  ... , (1.79) 

k 
 

is 
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+ 

 
 

 

y[n]   ak yk [n]  a1 y1[n]  a2 y2[n]  a3 y3 [n]  ... , (1.80) 
k 

 

2 which holds for linear systems in both continuous and discrete time. For a linear system, 

zero input leads to zero output. 

Examples: 
 

 The system y(t)  tx(t) is a linear system. 

 The system y(t)  x 2 (t) is not a liner system. 

 The system y[n]  Rex[n], is additive, but does not satisfy the homogeneity, so it is 
not a linear system. 

 The system y[n]  2x[n]  3 is not linear. y[n]  3 if x[n]  0 , the system violates the “zero- 

in/zero-out” property. However, the system can be represented as the sum of the output of 
a linear system and another signal equal to the zero-input response of the system. For 

system y[n]  2x[n] 

 3 , the linear system is 

 
x[n]  2x[n] , 

 
and the zero-input response is 

 
y0 [n]  3 

 
as shown in Fig. 1.31. 

 
y 0 (t ) 

 
 

 
x(t ) y (t) 

 
 
 

Fig. 1.31 Structure of an incrementally linear 
system. 

system. 

y0 (t) is the zero-input response of the 



                      SIGNALS & SYSTEMS 
 

 



Energy and power signals : 
- Consider a voltage v(t) across a resister R producing i(t). 

The instantaneous power p(t) = v(t) . i(t) 

= v(t) . 

p(t) = i2(t) R 

v(t

) R 
 

v2 (t) 

R 

- For a resister of 1 the instantaneous power p(t) = the square of the signal. 
- On integration of the instantaneous power over a period | t |  T. We can 
express the total 

energy and average power of a signal as 
Lt T 

Total energy = E =  i 2 (t) 
dt 

Joules for R = 1

T   
T 

 
Lt 1 T

 

Average power = P = i 2 (t) 
dt 

 

watts 

T   2T 
T 

Thus for a signal x(t) 
The average power is defined as 

Lt 1 T
 

P = | x (t) |2 
dt 

 

watts 

T   2T T 

Lt T 
And the total energy E = | x(t) |2 
dt 

Joules 

T   
T 

For a discrete time signal the total energy is defined as 

E = | x[n] |2 
n

The average power is defined as 
Lt 1 N

 

P = | x[n] |2 
 

N   2N  1 n N 

Definition : 
 

(i) A signal x(t) is called energy signal if the energy E satisfies the condition 0 < E < 
and P=0. 

(ii) A signal x(t) is called a power signal if the average power P satisfies the 
condition 0 < P <  and E = 



Ex : Determine the power and RMS values of the signal : 
x(t) = A cos (ot + ) 

Lt 1 T
 

P = | x[t] |2 dt 
 

T   2T T 

Lt 1  T
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=

  

1  T Lt 

1.3. Standard Signals: 
1.3.1. Sinusoidal signal: 

 
x(t) x(nT) 

x(t) = A sin t discrete time signal 
 

x(t) = A sin (t + ) 
 

 
1.3.2. Exponential Signals : 

x(t) = A eat When both ‘A’ & ‘a’ are real they are called real exponential 

signals. for a = 0  for a > 0

 for a < 0 

 
 
 
 
 
 

d.c. signal exponentially growing signal exponentially decaying 
signal 

 

Complex exponential signal : 
 

x(t) = est where S is a complex variable. 
S =  + J

So x(t) = et . eJt
 

Using Euler’s identity x(t) = et [cos t + J sin t] 
 

Case (i) if both  &  = 0. Then the signal is a pure d-c. 
 

S = 0 



 
 

 

 

Case (ii)  = 0 ; S =  then x = et. 
This is a decaying exponential for  < 0 and growing exponential for  > 0. 

 
Case (iii)   If  = 0 then S =  J. x(t) = eJt

 

This becomes a sinusoidal signal where real part is cos t and imaginary is sin t. 

 
Case (iv) 

 
Case (v) 

 

(1) x(t) = cos t (2) x(t) = A e-t 

 
Sinusoidal fn. Exponential fn. 

 

1.3.3. Unit step signal: 
u(t) = 1  for t  0 

= 0  for t < 0 



 
 

 

 
 

 

unit step fn. delayed unit step 
1.3.4. Unit ramp fn: 
r(t) = t for t  0 

= 0 for t < 0 
 
 

 

The unit ramp fn. can be obtained by applying a step fn. to an integration. 
 

i.e. r(t) =  u(t) dt = t in the interval   0  t or t  0 as a corollary 
u(t) = 

d r(t) 
.
 

dt 

 

1.3.5. Unit parabolic fn: 

t 2 

p(t) = 
2 

for t  0 

= 0 for t < 0 

t 2 

p(t) = 
2 

u(t) 

Unit parabolic fn. can be obtained by integrating ramps. 

t 2 

p(t) =  r(t) dt =  t dt = 
2 

for t  0 

or r(t) = 
d 

p(t) 
 

 

dt 
 

1.3.6. Unit impulse fn: 


 (t) dt 

1 


and  (t) = 0 for t  0 

Properties of unit impulse fns. : 


1.  x(t)  (t) 

dt 


 x(0) ------ (1) 

Consider the product of x(t) & 
(t) . Let x(t) be continuous at t = 
0. 
The value of x(t) at t = 0 x(0). 

 



 
 

 

But the impulse exists only at t = 0. Hence x(t) (t) = x(0) (t). 


So the integral   (1) can be written as  x(0)  

(t) dt 






 x(0)  (t) dt . 





0. 
 

2. x(t)  (t-t0) = x(t0)  (t – 
t0) 

= x(0) since   (t) 

dt 


1 provided x(t) is continuous at t = 

Let the signal x(t) be continuous at t = t0. and the value of x(t) at t = t0 is x(t0). 
 (t-t0) is an impulse at t = t0. 



 
 

 

a a 

Hence x(t)  (t – t0) = x(t0)  (t – t0) 
 
 
 

 
  

3.  x(t)  (t  t0 )dt   x(t0 )  (t  t0 )dt  x(t0 )  (t  t0 )dt 
  

= x(t0) 
Put (t – t0) =  dt = 
d



So x(t0)  ()d  x(t0 ) 






i.e.  x(t)  (t  t0 )dt  x(t0 ) . 




4.  (at) = 
1 

 

 

(a) 
(t) 

Consider the 
integral. 


 x(t)  (at) dt 




for a > 0 

Let at =  then a dt = d or dt 
= 

d 
.
 

a 

      d 1     1 
=  x  

a 
  () 

a 
 

a  x a 
  () d  

a 
x(0) 

      

Let us consider : 

a be -2 then we write 2t =  ; t 
= 

 
and dt = 

d


2 2 

       d

 x(t)  (2t) dt   x  
2 
  () 

2
 

 ()   () 

      

(i) = 



1 
x(0) = 

2 

 
1 

 
 

| a 
| 

1 

 

x(0) for a < 0 

 
1 

 x(t)  (at) dt  x(0)  x(0) for a  0 


Conside
r 

1 

x(0) 

| a | 



 
 

 



we know that x(0) 
=  x(t)  (t) dt 



1 1    1 
x(0) = a 

 
 | a |  x(t)  (t) dt 


 x(t) | a | 
 (t) dt 

 
 

 
Evaluate 
: 




  (at) 
= 

 
1 

 

 

| a 
| 

  

 (t) 

 



(i)  et
2   

 (t  10) 

dt 





(v)  (t  3)2  (t  3)dt 



(i)  t 2  (t  3) dt 


(vi
) 

  (t) cos t   (t  1) sin tdt 




 
 

 

a (t) = 





0 

5 

(ii)  (t) sin 2 t 

dt 
0 



(iii)  (t  3) et dt 




(vii)  (t) eJwt dt 




(viii) =  x(t) (t  3) dt 
0 

 
 
 
 

1.3.7. Rectangular pulse : 
(t) = 1 for |t|  ½ 

= 0 else where 
 
 
 
 

1.3.8. Triangular pulse : 

1 

0 

| t 
| 

 
 

a 

for (t)  a 

(t)  a 

 

1.3.9. Signum function. : 
 

 

Sgn (t) = 

 1 for 
 

for 

t  0 

t  0 

1 for t  0 

 

This also can be expressed 
as Sgn (t) = -1 + 2 
u(t) 

 

 
1.3.10. Sinc function : 

 

 

Sinc t = 
sin c 

t t 
-  < t < 



 
 

 

 

1.3. Basic operations on signals : 
 

(1) Time shifting (2) Time reversal (3) Time scaling 
(4) Amplitude scaling (5) Signal multiplier (6) Signal 

addition 
 

1.3.1. Time Shifting : 
 

Let the signal be x(t) 
Time shifting of x(t) may delay or advance the signal in time. 
i.e. y(t) = x(t – T) is T is +ve, it is a delay by T 

units if T is –ve it is an advance by T-units. 
 

Original Signal Advance by T-units Delay by T-units 
 

1.3.2. Time reversal : 

Original signal Time reversed signal 
 

Reversed and delayed by 2 units Reversed and advanced by 2 units 
1.3.3. Amplitude scaling : Amplitude scaled signal is obtained by scaling the 

amplitude of signal at each and every point. 












 
 

 

 

 

Ex : y(t) = 3 x(t) 
 

1.3.4. Time scaling: This can be accomplished by replacing t by “at” or “t/a”. 
Where a is a +ve integer. 

 
(1) Case 1 – ‘t’ replaced by at 

 
Y(t) = x(t) Y(t) = x(2t) Y(t) = x(t/2) 

 

Original signal Compressed Expanded 
 

1.3.5. Signal Addition x3 (t) = x1 (t) + x2 (t) 

 

 
Sketch the following signals : 

 
x(t) find x(t – 2) x(-t) 

(2t+3) x(-t + 1) 
(3/2 t) 

 
 
 

(1) u(t) – u(t – 2) (4) r(t) – 2 r(t-1) + r (t – 2) 
(2)  (t – 1/2 ) (5) r(t)  u [2 – t] 
(3)  

t 1 
  t 1




(6) r [-0.5t + 2] 


 2 

x 
x 



 
 

 

Odd and even signals discrete times : 

 

Odd Signal x[n] = -x [-n] Even Signal x[n] = x[-n] 
 

Even and odd composition original signal 

 

Even composition xe [n] = 
x[n]  x[n] 

 2 

 
 
 
Odd composition 

 
 

x [n]  
x[n]  x[n] 

0 
2

 
 
 

 



 

 

 

. 

UNIT– I2 

 FOURIER SERIES 
Representation of Fourier series, Continuous time periodic signals, Properties of Fourier 
Series, Dirichlet‟s conditions, Trigonometric Fourier Series and Exponential Fourier Series, 
Complex Fourier spectrum. 
Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of 
arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, 
Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum 
function, Introduction to Hilbert Transforms. 

 

3.0 Introduction 
 

 Signals can be represented using complex exponentials – continuous-time and 
discrete-time Fourier series and transform. 

 If the input to an LTI system is expressed as a linear comb ination of periodic 
complex exponentials or sinusoids, the output can also be expressed in this form. 

 
 
 

3.1 The Response of LTI Systems to Complex Exponentials 
 

It is advantageous in the study of LTI systems to represent signals as linear combinations of 
basic signals that possess the following two properties: 

 
 The set of basic signals can be used to construct a broad and useful class of signals. 

 

 The response of an LTI system to each signal should be simple enough in structure to provide 
us with a convenient representation for the response of the system to any signal constructed as 
a linear combination of the basic signal. 

 
Both of these properties are provided by Fourier analysis. 

 
The importance of complex exponentials in the study of LTI system is that the response of an LTI 
system to a complex exponential input is the same complex exponential with only a change in 
amplitude; that is 

 
Continuous time: est  H (s)e st , (3.1) 

 
Discrete-time: z n  H (z)zn , (3.2) 

 

where the complex amplitude 

factor complex variable s or z. 

H (s) or H (z)   will be in general be a function of the 



 

 

 

 

h( 
)e d  e 

 

A signal for which the system output is a (possible complex) constant times the input is referred to 
as an eigenfunction of the system, and the amplitude factor is referred to as the system‟s 
eigenvalue. Complex exponentials are eigenfunctions. 

 

 The response of an LTI system to each signal should be simple enough in structure to provide 
us with a convenient representation for the response of the system to any signal constructed as 
a linear combination of the basic signal. 

 
Both of these properties are provided by Fourier analysis. 

 
The importance of complex exponentials in the study of LTI system is that the response of an LTI 
system to a complex exponential input is the same complex exponential with only a change in 
amplitude; that is 

 
For an input x(t) applied to an LTI system with impulse response of h(t) , the output is 

 


y(t)  





 

h( )x(t   
)d



s (t  ) 

 

h(e) 

 
st 




s( t ) d



 s





, (3.3) 

 




where we assume that the 
integral 

 
h()e s d converges and is expressed as 



H (s)  


)es d , (3.4) 
h( 

 

the response to est is of the form 

 
y(t)  H (s)est , (3.5) 

 

It is shown the complex exponentials are eigenfunctions of LTI 

systems and specific value of s is then the eigenvalues associated with the 

eigenfunctions. 

H (s) for a 

 

Complex exponential sequences are eigenfunctions of discrete-time LTI systems. That is, 

suppose that an LTI system with impulse response h[n] has as its input sequence 





h( 
)e 

d



 

 

 

2 2 2 2 

3 3 3 3 

x[n]  z n , (3.6) 

 
where z is a complex number. Then the output of the system can be determined from the 
convolution sum as 

 



y[n]  h[k ]x[n  k ] 


k 




   

h[k ]z 
nk k 



zn h[k ]z k . (3.7) 
k 



Assuming that the summation on the right-hand side of Eq. (3.7) converges, the output is the 
same complex exponential multiplied by a consta nt that depends on the value of z . That is, 

 
y[n]  H (z)zn  , (3.8) 

 



where H (z)  h[k ]z k . (3.9) 
k 



It is shown the complex exponentials are eigenfunctions of LTI systems and H (z) for a 

specific value of z is then the eigenvalues associated with the eigenfunctions z n . 

 

The example here shows the usefulness of decomposing general signals in terms of 
eigenfunctions for LTI system analysis: 

Let  x(t)  a es1t   
 a  e s2 t   

 a e s3 t , (3.10) 
1 2 3 

 

from the eigenfunction property, the response to each separately is 

a e s1t   
 a H  (s )e s1t

 
1 1 1 1 

 
 

a e s2t   
 a H  (s )e s2t

 

 
a es3t  

 a H  (s  )es3t
 

 
and from the superposition property the response to the sum is the sum of the responses, 

 

y(t)  a1H1(s1)es1t 
 a2H2 (s2 )es2t 

 a3H3(s3)es3t , (3.11) Generally, if the input is 

a linear combination of complexexponentials, 

x(t)  akeskt  , (3.12) 
k 

 

the output will be 



 

 

 

k 

k 

y(t)   a  H (s  )eskt  , (3.13) 
k k 

k 
 

Similarly for discrete-time LTI systems, if the input is 

 

x[n] ak 

k 

z n , (3.14) 

 

the output is 

 
y[n]   ak H (zk ) z , (3.15) 

n 

k 
 
 

 

3.2 Fourier Series representation of Continuous-Time Periodic 
Signals 

 

3.31 Linear Combinations of harmonically Related Complex Exponentials 
 

A periodic signal with period of T , 
 

x(t)  x(t  T ) for all t , (3.16) 

 
We introduced two basic periodic signals in Chapter 1, the sinusoidal signal 

 

x(t)  cos 0 t , (3.17) 

 
and the periodic complex exponential 

 
x(t)  e j0t  , (3.18) 

 
Both these signals are periodic with fundamental frequency 0 and fundamental 

period T  2 / 0 . Associated with the signal in Eq. (3.18) is the set of harmonically related 

complex exponentials 

 

 (t)  e jk0 t      e jk ( 2 / T )t , k  0,  1,  2, ...... (3.19) 

 
Each of these signals is periodic with period of T (although for k  2 , the fundamental period of 

 k (t) is a fraction of T ). Thus, a linear combination of harmonically related 

complex exponentials of the form 

k 



 

 

 





 

x(t) 


a k e 
jk0 t   

  a k e 
jk ( 2 /T ) t 

, (3.20) 

k  k 



is also periodic with period of T . 
 

 k  0 , x(t) is a constant. 

 k  1 and   k  1 , both have fundamental frequency equal to 0 and are 

collectively referred to as the fundamental components or the first harmonic 

components. 

 k  2 and 

 k   N 
and 

k  2 , the components are referred to as the second harmonic components. 

k   N , the components are referred to as the Nth harmonic components. 

 

Eq. (3.20) can also be expressed as 
 

x(t)  x *(t) 




a *k e  jk0t   
, (3.21) 

k 



where we assume that x(t) is real, that is, x(t)  x 

*(t) . Replacing k by  k in the summation, we have 

x(t) 




a *k e jk0t   , (3.22) 

k 



which , by comparison with Eq. (3.20), requires that ak  a *k , or equivalently 

 
a *k ak . (3.23) 

 
To derive the alternative forms of the Fourier series, we rewrite the summation in Eq. (2.20) as 

 

0  ak e 
k 1 

 ak e . (3.24) 

 

Substituting a *k for ak , we have 
 

0  ak e 
k 1 

 a *k e . (3.25) 



 

 

 

 

 

 

f ak is expressed in polar from as 

 
a  A e jk , 

k k 

 

then Eq. (3.26) becomes 
 

  
 

 j( k0t k ) 
x(t)
 a
0 

 

k 1 

2R
e 

Ak e . 

 

That is 

 


x(t)  a0  2 Ak cos(k0 t  k ) . (3.27) 
k1 

 
It is one commonly encountered form for the Fourier series of real periodic signals in continuous time. 

 
 

Another form is obtained bywriting ak in rectangular form as 

 
ak  Bk  jCk 

 
then Eq. (3.26) becomes 

 

x(t)  a0  2 Bk cos k 0t  Ck sin k0t. (3.28) 
k 1 

 
 
 

For real periodic functions, the Fourier series in terms of complex exponential has the following 
three equivalent forms: 

 
 
 

 

x(t)  a ek 
jk 0t 

  a e jk( 2 / T ) t
 

k 
k  k 



x(t)  a0  2 Ak cos(k 0t   k 

) 
k 1 



x(t)  a0  2 Bk cos k0t  Ck sin k 0t
k 1 





 

 

 

jn    t 
  T      jk t T

3.3.2 Determination of the Fourier Series Representation of a Continuous-
Time Periodic Signal 

 
 

Multiply both side of x(t) 




a ke 
jk 0t 

k 

by e jn0 t , we obtain 

 

x(t)e jn0 t 





a k e 
jk0 t 

e
 jn0 

t k 


, (3.29) 

 

Integrating both sides from 0 to T  2 / 0 , we have 

T 
       jn t   j ( kn ) t 

 x(t)e 0 dt   ak  e 0 e 0 dt   ak  e 0 dt , (3.30) 
0 

k  
 0

 
0 

k 



Note that 
 

T 
e j( k n )0t dt  

T , k  n   
k  n 

0 0, 
 

So Eq. (3.30) becomes 

a    
1   T  

x(t)e jn0 t dt , (3.31) 

n T 0 

The Fourier series of a periodic continuous-time signal 
 

Eq. (3.32) is referred to as the Synthesis equation, and Eq. (3.33) is referred to as analysis equation. 

The set of coefficient ak  are often called the Fourier series coefficients of 

the spectral coefficients of x(t) . 

 
The coefficient a0 is the dc or constant component and is given with k  0 , that is 

  

x(t) 



k 



a e   0 

 
k 



a e jk 
(2 

 / T 
)t  (3.32

) 

a 
 

   

   

k 
dt 


T 

 

 T 
x(t)
e 

 jk 
(2 

 / T 
)t d

t 
(3.33
) 



 

 

 


a  

1
 

 

0 T T 

 
x(t)dt , (3.34) 

 

Example: consider the signal x(t)  sin 0 t . 
 

sin  t   
1 

e j0t 


1 
e j0t . 2 j 

 

0 2 
 

Comparing the right-hand sides of this equation and Eq. (3.32), we have 
 

a   
 1 

, a   
1

 
 

1 2 j 1 2 j 

 

ak  0 , k  1 or  1 

 
Example : The periodic square wave, sketched in the figure below and define over one period is 

 

1, t  T1 

x(t)  

0, T1  t  T / 2 
, (3.35) 

 

The signal has a fundamental period T and fundamental frequency  0  2 / T . 

 
x (t ) 

 
 
 
 

 2T T  T T T T 2T 
 

 

 
 

 1 1 

2 2 
 

To determine the Fourier series coefficients for x(t) , we use Eq. (3.33). Because of the 

symmetry of x(t) about t  0 , we choose  T / 2  t  T / 2 as the interval over which 

the 

integration is performed, although any other interval of length T is valid the thus lead to the same result. 
 

 
 
 
 
 



 
 

 




For k  0 , 
 

a  
1

 
0 

T1 

x(t)dt  
1

 
T 

T1 

dt  
2T1 , (3.36) 

T 
 

T 1 T 1 T 
 

For k  0 , we obtain 



 

 

 

 
 

a  
1

 
k 

T 


T1  

e jk0t dt  
1 

e  jk0t 

 
T 1 jk 0T 

 

 k
2T 

 e jk0T1 2 ej 
 jk0T1 

0  



 
2 sin(k0 T1 ) 

 
sin( k 0T1 

) 
k0T k

T1  
 

(3.37
) 

 

 
 

The above figure is a bar graph of the Fourier series coefficients for a fixed T 1 and several values 
of T . For this example, the coefficients are real, so they can be depicted with a single graph. For 
complex coefficients, two graphs corresponding to the real and imaginary parts or amplitude and 
phase of each coefficient, would be required. 

 
 

3.4 Convergence of the Fourier Series 
 

If a periodic signal x(t) is approximated by a linear combination of finite 

number of harmonically related complex exponentials 
 

xN (t) 


 ak e 
jk0t 

N 

. (3.38) 
k  N 

T 

1 



 

 

 

2 



 

Let eN (t) denote the approximation error, 
 

eN (t)  x(t)  xN (t)  x(t) 


N 

a k e 
jk0t   

. (3.39) 
k  N 

 

The criterion used to measure quantitatively the approximation error is the energy in the error 
over one period: 

 

 
EN   T  

eN (t)  dt . (3.40) 

It is shown (problem 3.66) that the particular choice for the coefficients that minimize the 
energy in the error is 

1 
a       

k T T x(t )e jk0t dt . (3.41) 

 

It can be seen that Eq. (3.41) is identical to the expression used to determine the Fourier 

series coefficients. Thus, if x(t) has a Fourier series representation, the best 

approximation using only 

a finite number of harmonically related complex exponentials is obtained by truncating the 
Fourier series to the desired number of terms. 

 
The limit of EN as N   is zero. 

 
One class of periodic signals that are representable through Fourier series is those signals 
which have finite energy over a period, 

 
x(t ) 

2 
dt   , (3.42) 

T 

 

When this condition is satisfied, we can guarantee that the coefficients obtained from Eq. 
(3.33) are finite. We define 

 



e(t)  x(t)  

ak 

e jk0 t   , (3.43) 

k



then 

 
 

T  
e(t) 

2 

dt  0 , (3.44) 



 

 

 



The convergence guaranteed when x(t) has finite energy over a period is very useful. In 

this case, we may say that x(t) and its Fourier series representation are 

indistinguishable. 

 
Alternative set of conditions developed by Dirichlet that guarantees the equivalence of the signal 
and its Fourier series representation: 

 
Condition 1: Over any period, x(t) must be absolutely integrable, that is 

 

T   
x(t) dt   , (3.45) 

This guarantees each coefficient ak will be finite, since 
 

a  
1

 
 k T T 

x(t)e  jk0 t dt  
1  




x(t) dt   . (3.46) 

T T 

A periodic function that violates the first Dirichlet condition is 
 

x(t)  
1 

, 

t 

 
0  t  1. 

 

Condition 2: In any finite interval oftime, x(t) is of bounded variation; that is, there are no 

more than a finite number of maxima and minima during a single period of the signal. An example of a 
 

function that meets Condition1 but not Condition 2: 

x(t)  sin
 2  

, 0  t  1, (3.47) 
 

 t 


Condition 3: In any finite interval of time, there are only a finite number of 
discontinuities. Furthermore, each of these discontinuities is finite. 

 
An example that violates this condition is a function defined as 

 

x(t)  1 , 0  t  4 , x(t)  1/ 2 , 4  t  6 , x(t)  1/ 4 , 6  t  7 , x(t)  1/ 8 , 7  t  7.5 , etc. 

The above three examples are shown in the figure below. 



 

 

 

   

 

The above are generally pathological in nature and consequently do not typically arise in 
practical contexts. 

 

Summary: 
 

 For a periodic signal that has no discontinuities, the Fourier series representation 
converges and equals to the original signal at all the values of t . 

 For a periodic signal with a finite number of discontinuities in each period, the Fourier 
series representation equals to the original signal at all the values of t except the 
isolated points of discontinuity. 

 

Gibbs Phenomenon: 
 

Near a point, where x(t) has a jump discontinuity, the partial sums    xN (t) of a Fourier series 

exhibit a substantial overshoot near these endpoints, and an increase in N will not diminish the 
amplitude of the overshoot, although with increasing N the overshoot occurs over smaller and 
smaller intervals. This phenomenon is called Gibbs phenomenon. 



 

 

 

k 

 
 

A large enough value of N should be chosen so as to guarantee that the total energy in these 
ripples is insignificant. 

 
 

3.5 Properties of the Continuous-Time Fourier Series 
 

Notation: suppose x(t) is a periodic signal with period T and fundamental frequency 0 . Then if 

the Fourier series 
coefficientsof 

 
x(t) FS  a  , 

x(t) are denoted by ak , we use the notation 

 

to signify the pairing of a periodic signal with its Fourier series coefficients. 



 

 

 

k k 

k 

0 k 

k 

k 

3.5.1 Linearity 
 

Let x(t) and y(t) denote two periodic signals with period T and which have Fourier series 

coefficients denoted by ak and bk , that is 
 

x(t) FS  a   and  y(t) FS b  , 
 

then we have 

 
z(t)  Ax(t)  By(t) FS 
c 

 
 
 Aak  Bbk . (3.48) 

 
 

3.5.2 Time Shifting 
 

When a time shift to a periodic signal x(t) , the period T of the signal is preserved. 

 
If  x(t) FS  a  , then we have 

 
x(t  t  ) FS  e jk0 t a  . (3.49) 

 
The magnitudes of its Fourier series coefficients remain unchanged. 

 

 
If  x(t) FS  a  , then 

 
x(t) FS  a  . (3.50) 

 
Time reversal applied to a continuous-time signal results in a time reversal of the 
corresponding sequence of Fourier series coefficients. 

 
If x(t) is even, that is x(t)  x(t) , the Fourier series coefficients are also even, ak  ak . 

Similarly, if x(t) is odd, that is x(t)  x(t) , the Fourier series coefficients are also 

odd, ak  ak . 

 
                 Time Scaling
 

If x(t) has the Fourier series representation x(t) 


representation of the time -scaled signal x(t) is 



a ke 
jk0t 

k 



, then the Fourier series 

k 



 

 

 

k 

k 

k 

 
x(t) 





a k e 
jk (0 ) t 

. (3.51) 
k 



The Fourier series coefficients have not changes, the Fourier series representation has changed 
because of the change in the fundamental frequency. 

 

3.5.4 Multiplication 
 

Suppose x(t) and y(t) are two periodic signals with period T and that 

 
x(t) FS  a  , 

 
y(t) FS b  . 

 
Since the product x(t) y(t) is also periodic with period T, its Fourier series coefficients hk is 

 

x(t) y(t) FS  h        
a b . (3.52) 

k l k l 
l 



The sum on the right-hand side of Eq. (3.52) may be interpreted as the discrete-time 

convolution of the sequence representing the Fourier coefficients of x(t) and the sequence 

representing the Fourier coefficients of y(t) . 

 

3.5.5 Conjugate and Conjugate Symmetry 
 

Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation 

and time reversal on the corresponding Fourier series coefficients. That is, if 

 
x(t) FS  a  , then 

 
x *(t) FS  a * k . (3.53) 

If x(t) is real, that is, x(t)  x *(t) , the Fourier series coefficients will be conjugate 

symmetric, that is 

 
ak   a *k . (3.54) 



 

 

 





k 

From this expression, we may get various symmetry properties for the magnitude, phase, real 
parts and imaginary parts of the Fourier series coefficients of real signals. For example: 

 
 From Eq. (3.54), we see that if x(t) is real, a0 is real and ak   ak . 

 If x(t) is real and even, we have ak  a k , from Eq. (3.54) ak  a *k , so ak  a *k  the 

Fourier series coefficients are real and even. 

 If x(t) is real and odd, the Fourier series coefficients are real andodd. 

 

3.5.6 Parseval’s Relation for Continuous-Time periodic Signals 
 

Parseval‟s Relation for Continuous-Time periodic Signals is 
 

1 
x(t) 

2 

T T 

 

Since 

 

 

dt   ak 
k 


2 , (3.55) 

 

1 
 a e jk0t 

2 

dt  
1 

a 
2 

dt  a 2 , 
  

k k k 

T T T T 
 

so 
that 

a 2 is the average power in the kth harmonic component. 

 

Thus, Parseval‟s Relation states that the total average power in a periodic signal equals the sum 
of the average powers in all of its harmonic components. 





 

 

 

3.5.7 Summary of Properties of the Continuous-Time Fourier Series 
 
 
 

Property Periodic Signal Fourier Series 
Coefficients 

 x(t)
 Periodic with period T and 

y(t)
 

fundamenta l frequency   2 
/T 

0 

ak 

bk 

Linearity Ax(t)  By(t) Aa k  Bbk 

Time Shifting x(t  t0 ) e jk0t a 
k 

Frequency shifting e jM0 t x(t) ak M 

Conjugation x *(t) a *k 

Time Reversal x(t) ak 

Time Scaling x(t) ,   0 (Periodic with period T / 
 ) 

ak 

Periodic Convolution 
T  

x( ) y(t   )d
Tak bk 

Multiplication x(t) y(t) 


 albkl 

l

Differentiation dx(t) 
 

dt 
jk a  jk 

2 
a 

 

0   k T k 

Integration t 

 
x(t)dt (finite valued and periodic 

only if a0  0 ) 


 1 

ak    

 1 

a
 

  

 jk  jk(2 / T ) k 
0  

Conjugate Symmetry for 
Real Signals 

x(t) real  ak  a*k 
 Rea  Rea 
 k k 

Imak  Imak 
 ak  ak 


 ak  ak 

Real and Even 
Signals Real and Odd 
Signals 

x(t) real and even 

x(t) real and odd 

 

 

xe (t)  Evx(t)  x(t) real 
x (t)  Odx(t) x(t) real
 e 

ak real and even 

ak purely imaginary 
and 

Even-Odd Decomposition odd 

of Real Signals 
Reak 

 j Imak 
 Parseval‟s Relation for Periodic 

Signals 1 2  
2

 

T  T   
x(t)  dt    ak 

k 

 



 

 

 

 


a 



c 



Example : Consider the signal g(t) with a fundamental period of 4. 

 
g (t ) 

 
 
 
 
 
 

t 
 
 
 

The Fourier series representation can be obtained directly using the analysis equation 

(3.33). We may also use the relation of g(t) to the symmetric periodic square wave x(t) 

discussed on page 

8. Referring to that example, T  4 and T1  1 , 

 
g (t)  x(t  1)  1/ 2 . (3.56) 

 
The time-shift property indicates that if the Fourier series coefficients of x(t) are denoted by ak 

the Fourier series coefficientsof x(t  1) can be expressed as 

 
b  a e  jk /2 . (3.57) 

k k 

 

The Fourier coefficients of the dc offset in g(t), that is the term –1/2 on the right-hand side of Eq. 

(3.56) are given by 
 

0, 
k  

1 
, 

   2 

for k  0 

for k  0 . (3.58) 

 

Applying the linearity property, we conclude that the coefficients for g(t) can be expressed as 
 


ak e

 jk / 2 

, 
for k  0 

d 
k 


  0 

 
1 

, 
2 

 

for k  0 
, (3.59) 

replacing a  
sin(k / 2) 

e jk / 2 , then we have 
 

k k

sin(k / 2) e jk / 2 , for k  0 

dk   k 

0, for k  0 

. (3.60) 

1 / 
2 

 

 1 / 
2 

   



 

 

 

Example : The triangular wave signal x(t) with period T  4 , and fundamental frequency 

 0   / 2 is shown in the figure below. 

 
x (t ) 

 
 
 
 
 
 

t 
 
 
 
 

The derivative of this function is the signal g(t) in the previous preceding example. Denoting 

the Fourier series coefficients 

of differentiation property, we 

have 

g(t) by dk , and those of x(t) by ek , based on the 

 

dk  jk( /2)ek . (3.61) 

 
This equation can be expressed in terms of ek except when k  0 . From Eq. (3.60), 

 

e  
2dk 

k

 jk


 
2 sin(k /2) 

e jk / 2 . (3.62)
 

jk 2
 

 

For k  0 , e0 can be simply calculated by calculating the area of the signal under one 

period and divide by the length of the period, that is 

 

e0  1 / 2 . (3.63) 

 

Example: The properties of the Fourier series representation of periodic train of impulse, 
 



x(t)   (t  kT ) . (3.64) 
k 



We use Eq. (3.33) and select the integration interval 
to be placement of impulses at the integration limits. 

 T / 2  t  T / 2 , avoiding the 

a  
1 T / 2 

 (t)e jk ( 2 / T )t dt  
1 

. (3.65) 

k T T / 2 T 

All the Fourier series coefficients of this periodic train of impulse are identical, real and even. 

 

  



 

 

 

0 1 0 1 0 1 0 1 

The periodic train of impulse has a straightforward relation to square-wave signals such 

as g(t) on page 8. The derivative of g(t) is the signal q(t) shown in the figure below, 

 
x(t ) 

 2T  T T 2T 

g (t ) 
 

 
 2T  T 

 
T 

2 

 T1 T1 T T 2T 2 
 

 

 
 

q(t ) 
 

 
 

 

which can also interpreted as the difference of two shifted versions of the impulse 

train That is, 

x(t) . 

 

q(t)  x(t  T1)  x(t  T1 ) . (3.66) 

 
Based on the time -shifting and linearity properties, we may express the Fourier coefficients bk of 

q(t) in terms of the Fourier series coefficient of ak ; that is 

b  e jk T a  e jk T a  
1 e jk T  e jk T , (3.67) 

k k k T 

 
Finally we use the differentiation property to get 

 
bk  jk0 ck , (3.68) 

where ck is the Fourier series coefficients of g(t). Thus 

 

 
 

  

 



 

 

 

0 1
 1 

1) 
dt 

2 

c  
bk 

 
2 j sin( k0T1 ) 

 
2 sin( k0T1 ) 






k jk
 jk

T k T , k 0 , (3.69) 

0 0 0 

 

c0 can be solve by inspection from the figure: 
 

c  
2T1 . (3.70) 

 

0 T 

 
Example: Suppose we are given the following facts about a signal x(t) 

 
1. x(t) is a realsignal. 

2. x(t) is periodic with period T  4 , and it has Fourier series coefficients ak . 

3. ak  0 for k  1 . 

4. The signal with Fourier coefficients bk  e  jk / 
2a 

is odd. 

5. 
1 
 x(t) dt  

1
 

4 4 2 
 

Show that the information is sufficient to determine the signal x(t) to within a sign factor. 

 
 According to Fact 3, x(t) has at most three nonzero Fourier series coefficients ak : a1 , a0 

and a1 . Since the fundamental frequency  0  2 / T  2 / 4   / 2 , it follows that 

 
x(t)  a  a e jt / 2  a e jt / 2 . (3.71) 

 
 Since x(t) is real (Fact 1), based on the symmetry property a0 is real and a1  a *1 . 

Consequently, 

x(t)  a  a e jt / 2  a e jt / 2 * a  2 Rea e jt /2 . (3.72) 
0 1 1 0 1 

 
 

 Based on the Fact 4 and considering the time-reversal property, we note that ak corresponds 

to x(t) . Also the multiplication property indicates that multiplication of kth Fourier series by 

e jk / 2 corresponds to the signal being shifted by 1 to the right. We conclude that the 

coefficients bk     
correspond to the signal x((t  1))  x(t  1) , which according to Fact 4 

must be odd. Since x(t) is real, x(t  1) must also be real. So based the property, 

the Fourier series coefficients must be purely imaginary and odd. Thus, b0  0 , b1  

b1 . 

 Since time reversal and time shift cannot change the average power per period, Fact 5 

holds even if x(t) is replaced by x(t  1) . That is 

1 
 x(t  

2 

 
1 

. (3.73) 
4 4 2 

 k 



 

 

 

 b 

k 

2 

Using Parseval‟s relation, 
 

b1 1 
2  1 / 2 . (3.74) 

 

Since b1  b1 , we obtain b1  1/ 2 . Since b1 is known to be purely imaginary, it must be 

either b1  j / 2 or b1   j / 2 . 

 
 Finally we translate the conditions on b0 and b1 into the equivalent statement on a0 and 

a1 . First, since b0  0 , Fact 4 implies that a0  0 . With k  1 , this condition implies that 

a  e  j / 2 b   jb  jb . Thus, if we take b  j / 2 , a  1/ 2 , from Eq. (3.72), 

1  1 1 1 1 1 

x(t)  cos(t / 2) . Alternatively, if we take b1   j / 2 , the a1  1 / 2 , and therefore, 

x(t)  cos(t / 2) . 
 
 

3.6 Fourier Series Representation of Discrete-Time Periodic 
Signals 

 
The Fourier series representation of a discrete-time periodic signal is finite, as opposed to the 
infinite series representation required for continuous-time periodic signals 

 

3.6.1 Linear Combination of Harmonically Related Complex Exponentials 
 

A discrete-time signal x[n] is periodic with period N if 

 
x[n]  x[n  N ] . (3.75) 

 
The fundamental period is the smallest positive N for which Eq. (3.75) holds, and the 

fundamental frequency is  0  2 / N . 

 
The set of all discrete-time complex exponential signals that are periodic with period N is given by 

 

 [n]  e jk0 n 
 e jk ( 2 / N ) n , k  0, 1,  2,...., (3.76) 

 

All of these signals have fundamental frequencies that are 
multiples of harmonically related. 

2 / N and thus are 

 

There are only N distinct signals in the set given by Eq. (3.76); this is because the 
discrete-time complex exponentials which differ in frequency by a multiple of 2 are 
identical, that is, 

 
k [n]  k rN [n] . (3.77) 



 

 

 

The representation of periodic sequences in terms of linear combinations of the sequences  k [n] is 

x[n]   a   [n]   a e jk0n   
 a  e jk ( 2 / N ) n . (3.78) 

k    k k kk k k 
 

Since the sequences k [n] are distinct over a range of N successive values of k, the summation 

in Eq. (3.78) need include terms over this range. We indicate this by expressing the limits of 

the summation as k  N . That is, 
 

 

. (3.79) 
 
 

Eq. (3.79) is referred to as the discrete-time Fourier series and the 
coefficients ak 

series coefficients. 

as the Fourier 

 

6.2 Determination of the Fourier Series Representation of a 
Periodic Signal 

 
The discrete-time Fourier series pair: 

 

Eq. (3.80) is called synthesis equation and Eq. (3.81) is called analysis equation. 
 

Example: Consider the signal x[n]  sin 0n , (3.82) 

 
x[n] is periodic only if 2 / 0 is an integer, or a ratio of integer. For the case thewhen 2 / 0 

is an integer N, that is, when 

   
2 

, (3.83) 
 

0 N 

 
x[n] is periodic with the fundamental period N. Expanding the signal as a sum of two 

complex exponentials, we get 

 
 

k  N k N 
  

k  N 

k k  k 

k  N k  N 
 k 

k  N 
, (3.80

) 

 k 
 1 

 n N 
x[n]e jk0n 

 

1   
n N 

(3.81
) 



 

 

 

x[n]  
1 

e j ( 2 / N )n 



2 j 

1 
e j( 2 / N ) n , (3.84) 

3 j 

 

From Eq. (3.84), we have 
 

1 
a1  

2 j 
, a1 

  
1

 
2 j 

 
, (3.85) 

 

and the remaining coefficients over the interval of summation are zero. As discussed previously, 
these coefficients repeat with period N. 

 
The Fourier series coefficients for this example with N  5 are illustrated in the figure below. 

 

When 2 / 0 is a ratio of integer, that is, when 

   
2M 

, (3.86) 
 

0 N 
 

Assuming the M and N do not have any commo n factors, x[n] has a fundamental period of 

N. Again expanding x[n] as a sum of two complex exponentials, we have 
 

x[n]  
1 

e jM ( 2 / N )n 



2 j 

  1 
e  jM ( 2 / N ) n , (3.87) 

2 j 

 

From which we determine by inspection that aM  (1/ 2 j) , aM  

(1/ 2 j) , and the remaining coefficients over one period of length N are zero. The Fourier 
coefficients for this example with M  3 and N  5 are depicted in the figure below. 

 



 

 

 

Example : Consider the signal 

x[n]  1  sin
 2 

n   2   4  

  3 cos 
n  cos

 

n     
 .  

 N   N   N 2 


Expanding this signal in terms of complex exponential, we have 

x[n]  1  ( 
3 
 1 

)e j( 2 / N ) n  ( 
3 
 

1 
)e  j( 2 / N ) n  

 1 
e j / 2 


j 2( 2 / N ) n  

 1 
e  j / 2 



 j2 ( 2 / N )n . 

 
 

                                     

 e   
e

 
 

2 2 j 2 2 j  2   2 



Thus the Fourier series coefficients for this signal are 
 

a0  1 , 
3 1 3 1 

a         j ,  
 

1 2 2 j 2 2 

a  
3 
 

1 
 

3 
 

1 
j , 

1 2 2 j 2 2 
1 

 j , 
2 2 

a2 
  

1 
j . 

2 

 

with ak  0 for other values of k in the interval of summation in the synthesis equation. The real 

and imaginary parts of these coefficients 
for coefficients are depicted in the figure 
below. 

N  10 , and the magnitude and phase of the 

 

a 



 
 

 

 



 

 

 

N 

 
 

 
 

Example : Consider the square wave shown in the figure below. 
 

 

Because 

the 

range 

x[n]  1 for  N1  n  N1 , we choose the length-N interval of summation to include 

 N1  n  N1 . The coefficients are given 

 

1 N1  jk ( 2 / N ) 

n 

ak  e 
n N1 

 
, (3.88) 

 

Let m  n  N1 , we observe that Eq. (3.88) becomes 



 

 

 

N  ak 
1 2 N1 

e 
n0 

 jk ( 2 / N )(m N1 )  1 
N 

2 N1 

e jk ( 2 / N )N1 e jk (2 / N ) m , (3.89) 

n 0 

 

a  
1

 jk ( 2 / N ) N1 


1  

e 

 
jk 2 ( 2 N11) / 
N 




1 

sin2k(N1 

 1/ 2) / N 


, k  0,  N,  2N, ...........(3.90) 

k 
N 

e 

and 

 1  e jk ( 2 / N )  N sin(k / N ) 
 



a  
2N1  1 

, k  0,  N,  2N , .... 
 

k N 

 
(3.91) 

 

The coefficients ak for 2N1  1  5 are sketched for N  10, 20, and 40 in the figure below. 
 

 

The partial sums for the discrete-time square 

wave for figure below, where N  9 , 2N1  1  5 . 

M  1, 2, 3, and 4 are depicted in the 

 

We see for M  4 , the partial sum exactly equals to x[n]. In contrast to the continuous-
time case, there are no convergence issues and there is no Gibbs phenomenon. 



 

 

 

 
 
 

 

3.7 Properties of Discrete-Time Fourier Series 
 
 

Property Periodic Signal Fourier Series 
Coefficients 

 x[n] Periodic with period N and 
y[n fundamenta l frequency   2

] 0 

ak 
Periodic with period N 

bk 

Linearity Ax[n]  By[n] Aa k  Bbk 

Time Shifting x[n  n0 ] e jk ( 2 / N ) t a 
k 

Frequency shifting e jM ( 2 / N )n x[n] ak M 

Conjugation x *[n] a *k 



 

 

 

Time Reversal x[n] ak 

Time Scaling 
x [n]  

x[n/m], if n is a multipleof n 
(m) 

0, if n is a multipleof n 
(Periodic with period mN ) 

1  viewed as periodic m 
a 

k with  period  mN 

Periodic Convolution x[r]y[n  r] 
r [ N ] 

Nak bk 

Multiplication x[n]y[n] 
 al bk l lN 

Differentiation x[n]  x[n 1] 1  e jk ( 2 / N ) a k
 

Integration n 

 x[k ] (finite valued and 

periodic 
k  

only if a0  0 ) 


 

1 
a 

 

 1  e jk ( 2 / N ) 
 k 

Conjugate Symmetry for 
Real Signals 

x[n] real  ak  a*k 
 Rea  Rea 
 k k 

Imak  Imak 
 ak  ak 


a  a 
 k k 

Real and Even Signals 
Real and Odd Signals 
Even-Odd
 Decompositio
n of Real Signals 

x[n] real and even 

x[n] real and odd 


 

xe[n]  Evx[n]  x[n] real 
x [n]  Odx[n] x[n] real
 e 

ak real and even 

ak purely imaginary and 

odd Reak 

j Imak 

 Parseval‟s Relation for Periodic 
Signals 

1 
 x[n] 2   a 2 

T k 
n N  n N 

 

 

3.7.1 Multiplication 
 
 

 

. (3.92) 

 

Eq. (3.92) is analogous to the convolution, except that the summation variable is now restricted to 
in interval of N consecutive samples. This type of operation is referred to as a Periodic Convolution 
between the two periodic sequences of Fourier coefficients. 

 

The usual form of the convolution sum, where the summation variable ranges 
from is sometimes referred to as Aperiodic Convolution. 

  to   , 

  
l N 



 

 

 

3.7.2 First Difference 
 

 
. (3.93) 

 
 

3.7.3 Parseval’s Relation 
 
 

. 

 

(3.94) 

 

 
3.7.4 Examples 

 

Example : Consider the signal shown in the figure below. 
 

x[n] 
2 

 

n 
-5 0 5 

 

x1 [n] 

n 
-5 0 5 

 

 

x2 [n] 
1 

 
n 

-5 0 5 

x[n]  x[n 1] 1  e       a 
 

1 
T n N x[n]2   ak 

2
 

k  N 

1 

1 



 

 

 











The signal x[n] may be viewed as the sum of the square wave x1 [n] with Fourier 

series coefficients bk and x2 [n] with Fourier series coefficients ck . 

 
ak  bk  ck , (3.95) 

 
The Fourier series coefficients for x1 [n] is 

 
1 sin(3k /5) 

, for k  0,  5,  10, .... 
b  

5 sin(k / 
5) . (3.96) 

k 
3 

, for k  0,  5,  10, .... 
5 

 

The 

sequence 

coefficient: 

x2 [n] has only a dc value, which is captured by its zeroth Fourier series 

 

 
1 4 

 

5 n0 

x2 [n]  1 , (3.97) 

 

Since the discrete-time Fourier series coefficients are periodic, it follows 
that ck 

is an integer multiple of 5. 
 

1 sin(3k / 5)
, for k  0,  5,  10, .... 

 
 

 1 whenever k 

a  
5 sin(k / 5) (3.98) 

k 
8 

, for k  0,  5,  10, .... 
5 

 

 

Example : Suppose we are given the following facts about a sequence x[n]: 

 
1. x[n] is periodic with period N  6 . 

2. 
5

 
n 0 

3. 
7

 
n 2 

x[n]  2 . 

(1)n x[n]  1. 

4.  x[n] has minimum power per period among the set of signals satisfying the preceding 

three conditions. 
 

 a  
1 5

 
 

 

x[n]  
1 

. 
 

From Fact 2, we have 0 
6 3

 

c
0 



 

 

 

/ 6)3 
n 

 



k k 

 Note that (1) n  e  jn  e j( 2
n 

P   ak 2 . 
k 0 

 

Since each nonzero coefficient contributes a positive amount to P, and since the values of a0 and 

a3 are specified, the value of P is minimized by choosing a1  a2  a4  a5  0 . It follows that 

x[n]  a  a e jn 
1 1 

(1)n , 
0 3 3 6 

 
which is shown in the figure below. 

 

1/2  
x[n] 

 
n 

-5 0 5 

 
 

 

3.8 Fourier Series and LTI Systems 
 

We have seen that the response of a continuous-time LTI system with impulse response 

h(t) to a complex exponential signal est is the same complex exponential multiplied by a 

complex gain: 

y(t)  H (s)est , where 
 

H (s)  
  

h( )es d , (3.99) 




In particular, for s  j , the output is y(t)  H ( j)e jt . The complex functions H (s) and 

H ( j) ?are  called  the  system  function  (or  transfer  function)  and  the  frequency  response, 

respectively. 
 

By superposition, the output of an LTI system to a periodic signal represented by a Fourier series 
 

 

x(t) 




a e
jk 0 t 






a e 
jk ( 2 /T ) 

t 

 
is given by 

k  k 

   1/6    



 

 

 

 ak H ( jk )e .

 (3.99) 

0 

0 

jk 
2t 

y(t) 




jk0t 
0 

k 



That is, the Fourier series coefficients bk of the periodic output y(t) are given by 

 
bk  ak H ( jk 0 ) , (3.100) 

 
Similarly, for discrete-time signals and systems, response h[n] to a complex exponential signal 

e jn is the same complex exponential multiplied by a complex gain: 

 
y[n]  H ( jk  )e jk0 n  , (3.101) 

 
where 

 



H (e j )  h[n]e  jn . (3.102) 
n 




Example: Suppose that the periodic 
signal 

 
3 

x(t)   
a 

1 
e 

jk 2t  with a  1 , a  a  , 
 

k 
k 3 

0 1 1 4 

a2  a2  
1 

, and 
2 

a3  a3  
3

 is the input signal to an LTI system with impulse response 

 

h(t)  et u(t) 
 

To calculate the Fourier series coefficients of 

theoutput response: 

y(t) , we first compute the frequency 

 

H ( j )  


e

e  j d 

 
1

 

 
e 



e 

 1 

, (3.103) 

0 1 j 1  j


The output is 
 

3 

y(t)  bke , (3.104) 
k 3 

 

where bk  ak H ( jk 0 )  ak H ( jk 2 ) ,  
 



1 



 

 

 

  b2 
1  1     

, 
b2  1  1 

, 

4 1  j4  4  1  j4 


b  
1 





1 
 ,

 b  
1 





1 
 .

 

3    3    

4 1  j6  4 1  j6 



Example: Consider an LTI system with impulse 

response the input 

h[n]   nu[n] ,  1    1, and with 

x[n]  
 2n  

. (3.105) 
cos 

 N 


Write the signal x[n] in Fourier series form as 

 

x[n]  
1 

e j( 2 / N ) n  
1 

e  j (2 / N ) n . 

2 2 
 

Also the transfer function is 

H (e j)   ne jn    e   
1 

. (3.106) 
   j n 

n 0 n 0 1   e j




The Fourier series for the output 
 

y[n]  
1 

H e j 2 / N  e j( 2 / N ) n   
1 

H e  j 2 / N e j( 2 / N 

)n 

2 2 

 
 
 

 
. (3.107) 

 1  
2 

1 
1   e j

e j( 2 / N )n  1 


2 

1 
1   e  j

e  j(2 / N ) n 

   



 

 

 

3.9 Filtering 
 

Filtering – to change the relative amplitude of the frequency components in a signal or eliminate 
some frequency components entirely. 

 

Filtering can be conveniently accomplished through the use of LTI systems with an 
appropriately chosen frequency response. 
LTI systems that change the shape of the spectrum of the input signal are referred to as 
frequency-shaping filters. 

 
LTI systems that are designed to pass some frequencies essentially undistorted and 
significantly attenuate or eliminate others are referred to as frequency-selective filters. 

 
Example : A first-order low-pass filter with impulse response h(t)  et u(t) cuts off the high 
frequencies in a periodic input signal, while low frequency harmonics are mostly left intact. 
The frequency response of this filter 

H ( j )  
 

e e  j d       
1     

. (3.107) 
0 1  j



We can see that as the frequency  increase, the magnitude of the frequency response of 

the filter H ( j ) decreases. If the periodic input signal is a rectangular wave, then the output 

signal 

will have its Fourier series coefficients bk given by 
 

b  a   H ( jk )  
sin(k0T1 ) 

,
 

 

 
k  0 (3.108) 

k k 0 
k (1  jk0) 

 

 
b0  a0 H (0)  

2T1 . (3.109) 

T 

 

The reduced power at high frequencies produced an output signal that is smother than the input signal. 
 
 
 
 
 
 
 
 
 
 

t 

1 

T T
1 

T
1 

T 



 

 

 

vr (t 

) 

 

 
 
c 

s 

c 

3.10 Examples of continuous-Time Filters Described By 
Differential Equations 

 
In many applications, frequency-selective filtering is accomplished through the use of LTI systems 
described by linear constant-coefficient differential or difference equations. In fact, many physical 
systems that can be interpreted as performing filtering operations are characterized by differential 
or difference equation. 

 

3.10.1 A simple RC Lowpass Filter 
 

The first-order RC circuit is one of the electrical circuits used to perform continuous-time filtering. 
The circuit can perform either Lowpass or highpass filtering depending on what we take as 
the output signal. 

 
 
 
 
 

vs (t ) (t ) 

 
 
 
 

If we take the voltage cross the capacitor as the output, then the output voltage is related to 
the input through the linear constant-coefficient differential equation: 

 

RC 
dvc (t) 

 v
 

dt c 
(t)  vs 

 

(t) . (3.111) 

 

Assuming initial rest, the system described by Eq. (3.111) is LTI. If the input is v (t)  e jt , we 

must have voltage 

output have 

v (t)  H ( j )e jt . Substituting these expressions into Eq. (3.111), we 

RC 
d H ( j )e jt  H ( j )ejt 
dt 

 
 e jt , (3.112) 

 

or 

 
RCjH ( j )e jt  H ( j )e jt  e jt , (3.113) 



 

 

 

Then we have H ( j )  
1

 
1  RCj

. (3.114) 

 

Te amplitude and frequency response H ( j) is shown in the figure below. 

 
 
 
 
 
 
 
 
 
 
 
 
 

We can also get the impulse response 
 

h(t)  
1 

et / RCu(t) , (3.115) 
RC 

 

and the step response is 

 
h(t)  (1 e t / RC )u(t) , (3.116) 

 
The fundamental trade-off can be found by comparing the figures: 

 
 To pass only very low frequencies, 

1/ RC should be small, or RC 
should be large. 

 
 To have fast step response, we need a smaller RC . 

 
 The type of trade-off between behaviors in the frequency domain and time domain is typical 

of the issues arising in the design analysis of LTI systems. 



 

 

 

3.10.2 A Simple RC Highpass Filter 
 

If we choose the output from the resistor, then we get an RC highpass filter. 
 
 

3.11 Examples of Discrete-Time Filter Described by Difference 
Equations 

 
A discrete-time LTI system described by the first-order difference equation 

 
y[n]  ay[n 1]  x[n] . (3.116) 

 
Form the eigenfunction property of complex exponential signals, if x[n]  e jn , then 

y[n]  H (e j )e jn , where H (e j ) is the frequency response of the system. 
 

H (e j )  
1

 
1 ae  j



. (3.117) 

 

The impulse response of the system is 

 
x[n]  anu[n]. (3.118) 

 
The step response is 

 

 

s[n] 
1 
an1 

1  a 

 
u[n]. (3.119) 

 

  
 

From the above plots we can see that for a  0.6 the system acts as a Lowpass filter and 
a  0.6 , the system is a highpass filter. In fact, for any positive value of a  1 , the system 
approximates a highpass filter, and for any negative value of a  1, the system approximates 



 

 

 

highpass filter, where 
a 

decreased. 

controls the size of bandpass, with broader pass 
bands as 

a in 

 

The trade-off between time domain and frequency domain characteristics, as discussed in 
continuous time, also exists in the discrete-time systems. 

 

3.11.2.2 Nonrecursive Discrete-Time Filters 
 

The general form of an FIR norecursive difference equation is 
 

M 

y[n]  bk x[n  k ]. (3.120) 
k  N 

 

It is a weighted average of 

the coefficients bk . 

(N  M  1) values of x[n] , with the weights given by the 

 

One frequently used example is a moving-average filter, where the output of y[n] is an average 

of values 

of filtering. 

x[n] in the vicinity of n0 - the result corresponding a smooth operation or lowpass 

 

An example: y[n]  
1 
x[n 1]  x[n]  x[n  1].

 (3.121
) 3 

 

The impulse response is 
 

h[n]  
1 
[n  1]  [n]   [n 1], (3.122) 

3 
 

and the frequency response 
 

H (e j )  
1
 e j  1  e j . (3.123) 
3 



 
 

 

 



 

 

 

k N 

M  N  1  

 

A generalized moving average filter can be expressed as 
 

1 M 

y[n]  
N  M  1 

bk  x[n  k] . (3.124) 

 

The frequency response 
is 

j1 

 
1 j( N M ) / 2 sinM  N  1/ 2

H (e )  e 
k N 

 jk  e   . (3.125) 
M  N  1 sin  / 2 

The frequency responses with different average window lengths are plotted in the figure below. 
 

FIR norecursive highpass filter 
 

M 



 

 

 

An example of FIR norecursive highpass filter is 

y[n]  
x[n]  x[n 1] 

. (3.126) 

2 
 

The frequency response is 
 

H (e j )  
1 1 e  j 
2 

 

je j / 2 sin( / 2) . (3.127) 
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0 

Continuous-Time Fourier Transform 
 

 

4.0 Introduction 
 

 A periodic signal can be represented as linear combination of complex exponentials which are 
harmonically related. 

 An aperiodic signal can be represented as linear combination of complex exponentials, which 
are infinitesimally close in frequency. So the representation take the form of an integral rather 
than a sum 

 In the Fourier series representation, as the period increases the fundamental frequency 
decreases and the harmonically related components become closer in frequency. As the 
period becomes infinite, the frequency components form a continuum and the Fourier series 
becomes an integral. 

 
 

4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier 
Transform 

 

4.1.1 Development of the Fourier Transform Representation of 
an Aperiodic Signal 

 
Starting from the Fourier series representation for the continuous-time periodic square wave: 

 

1, t  T1 

x(t)  

0, T1  t  T / 2 
, (4.1) 

 
x (t ) 

 
 
 
 

 2T  T T   T T T T 2T 
 

 

 
The Fourier coefficients ak for this square wave are 

 
 

 1 1 

2 2 

 

a  
2 sin(k0 T1) 

. (4.2)
 

k k T 

 
or alternatively 
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Tak 



k
0 

, (4.3) 

 

where 2sin(T1) /  represent the envelope of Tak 

 
 When T increases or the fundamental frequency 0  2 / T decreases, the envelope is 

sampled with a closer and closer spacing. As T becomes arbitrarily large, the original 
periodic square wave approaches a rectangular pulse. 

 
 Tak becomes more and more closely spaced samples of the envelope, as T   , the 

Fourier series coefficients approaches the envelope function. 
 

This example illustrates the basic idea behind Fourier‟s development of a representation for 
aperiodic signals. 

 
Based on this idea, we can derive the Fourier transform for aperiodic signals. 

 

Suppose a 

signal figure 

below. 

x(t) with a finite duration, that is, x(t)  0 
for 

t  T1 , as illustrated in the 

2sin(T1 
) 


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



a   ) 

k 

 

 As T   ,   ~x (t)  x(t) , for any infinite value of  t . 

 The Fourier series representationof  ~x (t)  is 
 

~x (t) 




a  e jk0t   , (4.4) 

k 

a     
1   T / 2  ~x (t)e jk0 t dt . (4.5) 

k T T / 2 

 Since  ~x (t)  x(t)  for   t  T / 2 , and also, since  x(t)  0  outside this interval, so we have 

a  
1 T / 2 

x(t)e  jk0 t dt  
1  

x(t)e  jk0t dt . 

k T T / 2 T 

 Define the envelope X ( j ) of Tak as 

 

X ( j)  
 

x(t)e jt dt . (4.6) 


we have for the coefficients ak 

, 1 
 X ( jk 

k T 0 

 

The
n 

~x (t)  can be expressed in terms of   X ( j ) , that is 

 
~x (t) 
 

 1 X ( jk0 )e jk0t  
1    

X ( jk 0 )e jk0t
   . (4.7) 

 

k 
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





 As T   ,   ~x (t)  x(t)  and consequently, Eq. (4.7) becomes a representation of   x(t) . 

 In addition,  0  0 as T   , and the right-hand side of Eq. (4.7) becomes an integral. 

 
We have the following Fourier transform: 

 

 

 

4.1.2 Convergence of Fourier Transform 
 

If the signal x(t) has finite energy, that is, it is square integrable, 
 

  

x(t) 

2 

dt   , (4.10) 

 

Then we guaranteedthat   X ( j ) is finite or Eq. (4.9) converges. If  e(t)  ~x (t)  x(t) , we have 
 

  

e(t) 

2 

dt  0 . (4.11) 

 

An alterative set of conditions that are sufficient to ensure the convergence: 

 
Contition1: Over any period, x(t) must be absolutely integrable, that is 

 

  
x(t) dt   , (4.12) 

Condition 2: In any finite interval oftime, x(t) have a finite number of maxima and mi nima. 

 
Condition 3: In any finite interval of time, there are only a finite number of 
discontinuities. Furthermore, each of these discontinuities is finite. 

x(t) 


 

2








 
(4.8
) 

an
d 

X ( j)   x(t)e 

jtdt 




Fourier 
Transform 

(4.9
) 
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0 a  j a  j



4.1.3 Examples of Continuous-Time Fourier Transform 
 

Example : considersignal x(t)  e at u(t) , a  0 . 

From Eq. (4.9), 



X ( j)   eat e jt dt   
1 

e( a j )t 
 
1 

, a  0 (4.12) 

0 

 

If a is complex rather then real, we get the same result if Rea 0 

The Fourier transform can be plotted in terms of the magnitude and phase, as shown in the 
figure below. 

X ( j)   
1 

, X ( j )   tan 1
   

. (4.13) 
 a 





Example :Let x(t)  ea t , a  0 
 

X ( j)  
 

ea t e jt dt  
0 

e at e jt dt  
 

eat e  jt dt    1    1  2a 
  

  
  0 a  j a  j a 2   2 

 

The signal and the Fourier transform are sketched in the figure below. 
 

a 2   2 
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





Example: x(t)   (t) . (4.14) x(t)   (t) X ( j)  1 

X ( j )  
 

 (t)e jt dt  1. (4.15) 










That is, the impulse has a Fourier transform consisting of equal contributions at all frequencies. 
 

Example : Calculate the Fourier transform of the rectangular pulse signal 
 

1, 
x(t)  

0, 

t  T
1 . (4.16) 

t  T1 

x(t ) 
 

  
1 

    

 T1 T1 

X ( j)  
   

x(t)e jt dt  
T1 

1e  jt dt  2 
sin T1  . 

 T1 
(4.17) 

 
The Inverse Fourier transform is 

x̂(t)    
1  

  

2 
sinT1  e jt d , (4.18) 

2  


Since the signal x(t) is square integrable, 
 

e(t)    
x(t)  

x̂(t) 

2 

dt  0 . (4.19) 

 

xˆ(t ) converges to x(t) everywhere except at the discontinuity, t  T1 , where xˆ(t ) converges to 

½, which is the average value of x(t) on both sides of the discontinuity. 

 
In addition, the convergence of xˆ(t ) to x(t) also exhibits Gibbs phenomenon. Specifically, 
the integral over a finite-length interval of frequencies 

 
1 W 

2 
sinT1 

e jt d

2 W 
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

As W   , this signal converges to   x(t) everywhere, except at the discontinuities. More over, 

the signal exhibits ripples near the discontinuities. The peak values of these ripples do not 
decrease as W increases, although the ripples do become compressed toward the discontinuity, 
and the energy in the ripples converges to zero. 

 
Example : Consider the signal whose Fourier transform is 

 

1, 
X ( j)  

0, 

  W 

  W 
.
 

 
 

 
 

The Inverse Fourier transform is 

 
x(t)    1 W 

e jt d  
sinWt 

.
 

2 W t 

Comparing the results in the preceding example and this example, we have 
 

This means a square wave in the time domain, its Fourier transform is a sinc function. However, 
if the signal in the time domain is a sinc function, then its Fourier transform is a square wave. This 
property is referred to as Duality Property. 

 

We also note that when the width of X ( j ) increases, its inverse Fourier transform x(t) will 

be compressed. When W   , X ( j ) converges to an impulse. The transform pair with 

several different values of W is shown in the figure below. 

Square wave 
  

Sinc 

function 

 
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4.2 The Fourier Transform for Periodic Signals 
 

The Fourier series representation of the signal x(t) is 
 

 
x(t) 




a k e 
jk0t   

. (4.20) 
k 



It‟s Fourier transform is 
 



X ( j )   2ak  ( k 0 ) . 
k 

(4.21) 
 

Example : If the Fourier series coefficients for the square wave below are given 

 
x (t ) 

 
 
 
 

 2T  T T   T T T T
2T 

 
 

 
 

 1 1 

2 2 

 

a  
sin k0 T1 , (4.22) 

k k 

The Fourier transform of this signal is 
 

X ( j) 




k 

2 sin k 0T1  ( k ) . (4.23) 
k 

0
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Example: The Fourier transforms 

for below. 

x(t)  sin 0t and x(t)  cos 0 t are shown in the figure 
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

Example: Calculate the Fourier transform for signal x(t)   (t  kT ) . 
k 



The Fourier series of this signal is 

a  
1 T / 2

 (t)e  j0t 
 

1 
. 

k T T / 2 T 

The Fourier transform is 
 

X ( j)  
2






 ( 2k 
) .

 
T 

T k 0 

 

The Fourier transform of a periodic impulse train in the time domain with period T is a 
periodic impulse train in the frequency domain with period 2 / T , as sketched din the 
figure below. 

 

 

4.3 Properties of The Continuous-Time Fourier Transform 

4.3.1 Linearity 
 

If  x(t) F  X ( j )  and  y(t) F Y ( j ) 

Then 
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 ax(t)  by(t) F  aX ( j)  bY ( j) . (4. 20) 

 
4.3.2 Time Shifting 

 
If  x(t) F  X ( j ) 

 

Then 

 

(4. 20) 
 

Or 
 

(4. 20) 
 

Thus, the effect of a time shift on a signal is to introduce into its transform a phase shift, namely, 

  0 t . 

 
Example: To evaluate the Fourier transform of the signal x(t) shown in the figure below. 

 
x(t ) 

 
 
 
 
 

t 

 

 
x2 (t ) x1 (t ) 

 

1 1 
 

 
3 3 

2 2 

t t 

 
1 1 

2 2 

 

The signal x(t) can be expressed as the linear combination 

x(t)  
1 

x (t  2.5)  x (t  2.5) . (4. 20) 
 

2 1 2 

 
x1 (t) and x2 (t) are rectangular pulse signals and their Fourier transforms are 

x(t  
t 

) 
  

 e  

0 X ( j)  X ( j) e 
 j X ( j ) t  

. 

1.5 
 

1 2 3 4 
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

X ( j )  
2 sin( / 

2) 
1 

and X ( j )  
2sin(3 / 2) 

2 



Using the linearity and time -shifting properties of the Fourier transform yields 

X ( j)  e  j5 / 2 sin( / 2)  2 sin(3 / 2) 


 
 

 


4.3.3 Conjugation and Conjugate Symmetry 

 
If  x(t) F  X ( j ) 

 

Then 

 

x *(t) F  X * ( j) . 

 
 

 
(4. 20) 

 
Sinc
e 

X *( j)   x(t)e  jtdt 
 





x * (t)e jt dt , 

   

Replacing  by   , we see that 

X *( j )  
 

x * (t)e  jt dt , (4. 20) 


The right-hand side is the Fourier transform of x * 

(t) . If x(t) is real, from Eq. (4.20) we can get 

X ( j )  X * ( j ) . (4. 20) 

We can also prove that if x(t) is both real and even, then X ( j ) will also be real and 

even. Similarly, if x(t) is both real and odd, then X ( j ) will also be purely imaginary and 

odd. 
A real function x(t) can be expressed in terms of 

the sum of an even function 

xe (t)  Evx(t)and an odd 
function  
x(t)  xe (t)  xo (t) 

xo (t)  Od x(t). That is 

 



 

93 

 

 

dx(t) 
  j X ( j ) 

dt 

t 



Form the Linearity property, 

Fx(t)  F xe (t) F xo (t), 

From the preceding discussion, Fxe (t) is real function and Fxo (t) is purely imaginary. 

Thus we conclude with x(t) real, 

 
x(t) F  X ( j ) 

 

Evx(t)F ReX ( j) 

Od x(t)F  j ImX ( j )

Example: Using the symmetry properties of the Fourier transform and the result 

eat u(t) F  
1

 
a  j

to evaluate the Fourier transform of the signal x(t)  ea t , where a  0 . 

 

Since 
 a t 

 at  at 
  

 e atu(t)  eat u(t)  
  at 


x(t) e e u(t) e u( t) 2



2Ev e 
2 

u(t) , 

So X ( j)   1  2a 
2 Re 

 a  j   a 2   2 
 


4.3.4 Differentiation and Integration 

 
If  x(t) F  X ( j ) 

Then 

 

 

. (4. 20) 

 

 

  x( )d F  
  1   

X ( j)  X (0) () 
 j . (4. 20) 

 

Example : Consider the Fourier transform of the unit step x(t)   
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1 

 1  

1 

  

t 

t 

u(t) . It is know that 

g(t)   (t) F 

1 Also note 

that 

x(t)    
g( )d

The Fourier transform of this function is 
 

X ( j)  
1 
 G(0) ( ) 

j


where G(0)  1. 

1 
  ( ) . 

j



Example: Consider the Fourier transform of the function x(t) shown in the figure below. 
 
 
 
 

 

t 

= +  1  1 

 
 

g (t)  
dx(t) 

dt 
 

From the above figure we can see 
that 

G( j )  
 2 sin  

 e j  e  j

g(t) is the sum of a rectangular pulse and two impulses. 

 
 



 


Note that G(0)  0 , using the integration property, we obtain 

X ( j)  
G( j ) 

 G(0) ( )  
2 sin  

 
2 cos 

. 
   

j j 2 j


x(t) 

 
1 

 
t 
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0, 

 
 

4.0.1 Time and Frequency Scaling 

x(t) F  X ( j ) , 
 

Then 

x(at) F   
1

 X ( 
j 

) . (4. 20) 

a 

 

From the equation we see that the signal is compressed in the time domain, the spectrum will be 
extended in the frequency domain. Conversely, if the signal is extended, the corresponding 
spectrum will be compressed. 

 
If a  1, we get from the above equation, 

 
x(t) F  X ( j) . (4. 20) 

 
That is, reversing a signal in time also reverses its Fourier transform. 

 

4.0.2 Duality 
 

The duality of the Fourier transform can be demonstrated using the following example. 

 
x (t) 





1, 


t  T1  
F X 

 
( j) 

2 sinT1 
 

 

0, t  T1 


x  (t)  
sinWT1  

F  X 
 

 

1,   W 

2 t 2 ( j )     W 

 
 

 

1 

1 
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The symmetry exhibited by these two examples extends to Fourier transform in general. 
For any transform pair, there is a dual pair with the time and frequency variables 
interchanged. 

 

Example : Consider using duality and the 

result transform G ( j ) of the signal 

g (t)   
2 

. 
1  t 2 

e t  F X ( j )  
2

 
1  2 

 

to find the Fourier 

 

Since e t  F X ( j )  
2

 
1  2 

 

, that is, 

e t     
1  



 

2 
2 
 e jt d , 

2  1 
 



Multiplying this equation by 2 and replacing t by  t , we have 
 

2e t 
 

 
 2 

 
e jt d

 1   2 
Interchanging the names of the variables t and  , we find that 

2e   
   2  

e jt d     F1 
 2    

 2e  . 

 
 

1  2  1  t2 
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 t  


Based on the duality property we can get some other properties of Fourier transform: 
 

 
 

 
 

 jtx(t )  
dX ( j  )

 


e x(t)  X ( j(  0 F  0 


 1 

j
t 

x(t)  

x(0) 

 (t ) 



F 






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) 

4.0.3 Parseval’s Relation 
 

If  x(t) F  X ( j ) , 

We have 

Parseval‟s relation states that the total energy may be determined either by computing the 

energy per unit time x(t) 2 and integrating over all time or by computing the energy per 

unit frequency 

X ( j ) 2 / 2 and integrating over all frequencies. For this reason, X ( j) 2 is often 

referred to as the energy-density spectrum. 

 

4.1 The convolution properties 
 

The equation shows that the Fourier transform maps the convolution of two signals into 
product of their Fourier transforms. 

 

H ( j ) , the transform of the impulse response, is the frequency response of the LTI system, 

which also completely characterizes an LTI system. 
 

Example : The frequency response of a differentiator. 
 

y(t)  
dx(t) 

. 

dt 
 

From the differentiation property, 
 

Y ( j )  jX ( j ) , 
 

The frequency response of the differentiator is 

Y( j

H ( j ) 
X ( j 

)  j .
 

 

Example : Consider an integrator specified by the equation: 





x(t) dt 


2   1 

2 





y(t)  h(t)  x(t )F Y ( j)  H ( j) X ( j) 
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t 

 

y(t)    
x( )d . 

The impulse response of an integrator is the unit step, and therefore the frequency 
response of the system: 

H ( j )  
1 
  () . 

j


So we have 

Y ( j )  H ( j ) X ( j)  
1 

X ( j )  X (0) () , 
j



which is consistent with the integration property. 
 

Example : Consider the response of an LTI system with impulse response 

 
h(t)  e at u(t) , a  0 

 
to the input signal 

 
x(t)  ebt u(t) , b  0 

 
To calculate the Fourier transforms of the two functions: 

 

X ( j)  
1

 
b  j

H ( j)  
1 

. 

a  j



, and 

 

Therefore, 
 

Y ( j )  
a  j






1 , 
b  j 



using partial fraction expansion(assuming a  b ), we have 

Y ( j )  
1  1 

 
1 



b  a  a  j b   j

The inverse transform for each of the two terms can be written directly. Using the linearity 
property, we have 
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d a 

y(t)  
1

 
b  a 

eat u(t)  ebtu(t). 

 

We should note that when a  b , the above partial fraction expansion is not valid. 
However, with a  b , we have 

 

Y ( j )  



1 

a  j  2  
,
 

 

Considering a  
1
j 2 

 j  d  
 


1 


 

, and 

d   a j 


eat u(t) F  

1
 

a  j

 


, and 

 

te atu(t) F  j  
d

 

 1 
 j

 
,
 

 


so we have 

 
 

Y (t)  te at u(t) . 

 

4.2 The Multiplication Property 
 

Multiplication of one signal by another can be thought of as one signal to scale or modulate the 
amplitude of the other, and consequently, the multiplication of two signals is often referred to as 
amplitude modulation. 

 

Example :Let s(t) be a signal whose spectrum S ( j ) is depicted in the figure below. 

       



1 

2








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S ( j 

 
 

Also consider the signal 
 

p(t)  cos0 t , then 

 
P( j )   (  0 )   (   0 ) . 

 
The spectrum of r(t)  s(t) p(t) is obtained by using the multiplication property, 

 

R( j )    
1  

 

)P( j(   ))d

2 



 
1 

S ( j  

2 
0

 

 
, 

)  
1 

S ( j   ) 2 0 

 

which is sketched in the figure below. 

 
 
 
 
 
 

From the figure we can see that the signal is preserved although the information has been 
shifted to higher frequencies. This forms the basic for sinusoidal amplitude modulation 
systems for communications. 

 
Example: If we perform the following multiplication using the signal r(t) obtained in the 

preceding example 
and 

 
g (t)  r(t) p(t) 

p(t)  cos0 t , that is, 

 

The spectrum of P( j) , R( j) and G ( j ) are plotted in the figure below. 
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If we use a lowpass filter with frequencyresponse H ( j) that is constant at low frequencies 

and zero at high frequencies, then the output will be a scaled replica of S ( j ) . Then the 

output will be scaled version of s(t) - the modulated signal is recovered. 
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4.3 Summary of Fourier Transform Properties and Basic Fourier Transform Pairs 
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System Characterized by Linear Constant-Coefficient Differential Equations 
 

An LTI system described by the following differential equation: 
 

N d k y(t) M d k x(t) 

 ak 

k 0 

k  
b
k k 0 

dt k 
, (4. 67) 

 

which is commonly referred to as an Nth-order differential equation. The frequency response 

of this LTI system 

H ( j )  
Y ( j ) 

, (4. 68) 
 

X ( j ) 
 

where X ( j ) , Y( j) and H ( j ) are the Fourier transforms of the input x(t) , output y(t) 

and the impulse response h(t) , respectively. 

 

Applying Fourier transform to both sides, we have 

 N d k y(t)   M d k x(t)
F  ak dt k   F bk dt k 

 , (4. 69) 
k 0  k 0 



From the linearity property, the expression can be written as 

N  dk  y(t)  M  d k x(t) 

 ak F    dt k    bk F  dt k 
. (4. 70) 

k 0   k0  



From the differentiation property, 

N M Y ( j ) 


M    
b  

( j)k 
a  ( j )k Y ( j )  b  ( j)k X ( j )  H ( j )  k 0 k (4. 71) 

k 
k 0 

k 
k0 X ( j)   


N

 a ( j )k 

 
H ( j ) is a rational function, that is, it is a ratio of polynomials in ( j 
) . 

k 0 k 

 

Example : Consider a stable LTI system characterized by the differential equation 
 

dy(t) 
 ay(t)  x(t) , 

with 

dt 
 

The frequency response is 

d
t 



 

106 

 

 

 



 

107 

 

 

H ( j) 

1 
. 

j  a 

 

Te impulse response of this system is then recognized as 

 
h(t)  e at u(t) . 

 
Example : Consider a stable LTI system that is characterized by the differential equation 

 

d 2 
y(t) 

 
 

dt 2 

 4 
dy(t) 

 3y(t) 


dt 

dx(t

) dt 

 
 2x(t) . 

The frequency response of this system is 
 

H ( j )  
( j)  2 




( j )2  4( j )  3 

j  2 

 j  1 j  3 
.
 

 

Then, using the method of partial-fraction expansion, we find that 
 

H ( j )    
1/ 2 


j  1 

1 / 2 

j  3 
.
 

 

The inverse Fourier transform of each term can be recognized as 

h(t)  
1 

et u(t)  
1 

e3t u(t) . 
2 2 

 

 
Example: Consider a system with frequency 

response of that the input to the system is 

j  2 
H ( j )  

 j  1 j  3



and suppose 



 

108 

 

 

   
 2 

x(t)  et u(t) , 
 

find the output 
response. 

 
The output in 
the frequency 
domain is give 
as 

Y ( j )  H ( j ) X 

( j)  
 j  

2

 



 

1

 

 
 
j  

2

 

, 
j 1 j  3 j  
1  j  1  j  

3)









Y ( j )    
1 / 4 


j  1 

1/ 
2 

 j  12
 

1/ 4 
 
 j  3) 

,
 

 

By inspection, we get directly the inverse Fourier transform: 

h(t)  
 1 

et  
1 

tet  
1 

e3t 



4 2 4 

u(t)
. 
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UNIT – 3 
SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS 

Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) 
System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic 
of Linear System, Distortion less transmission through a system, Signal bandwidth, System 
Bandwidth, Ideal LPF, HPF, and BPF characteristics. 
Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth 
and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and 
Frequency domain, Graphical representation of Convolution. 

 

Linear systems 
A system is said to be a linear if it obeys homogeneity and additivity properties. This implies that 
the response of a linear system to weighted sum of input signals is equal to the same weighted sum 
of responses of the system to each of those signals. 
Homogeneity property: This property says if input signal weighted by any arbitrary constant then 
output signal also weighted by same arbitrary constant 

 

 
 

Additive property: Response of system to sum of two input signals is equal to sum of individual 
response of the system. 

 

Combining above two properties 
 

 

Response 

 
Arbitrary constant 

 

 

Where  is the output of the system in response to  

Classification of linear systems 
Lumped and Distributed system 
Time – Invariant and Time Variant system 

Lumped and Distributed system: A Lumped System consists of lumped elements which are 
interconnected in particular way. The energy in the system is considered to be stored or dissipated 
in distinct isolated elements. The disturbance initiated at any point is propagated instantaneously 
at every point in the system. The dimension of elements is very small compared to wave length of 
the signals to be transmitted. Lumped system obeys Ohms law and Kirchhoff laws. They can be 
expressed with ordinary differential equations. Examples are TVS, motors, computers, any packed 
sytems 
Distributed systems are those in which elements are distributed over a long distances and 
dimensions of the circuits are small compared to the wave length of signals to be transmitted. More 
over such system takes finite amount of time for disturbance at one point to be propagated to 
the other point. They can be expressed with partial differential equations. Example are wave 
guides, optical fiber, transmission lines, antennas. 
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Linear Time Invariant (LTI) System: A system said to be LTI if it satisfies linear and invariance 
properties. Stated in another way, A LTI system whose parameters do not change with time. LTI 
system is characterized by linear equations such as algebraic, differential, or difference equations 
with constant coefficients. 
Example: Circuits using passive elements are LTI systems 
For LTI system, if input is delayed by t0 seconds the system satisfies superposition and 
homogeneity principles. Also, the output delayed by the same time t0 seconds. 

 

 
 

 

Linear Time Variant (LTV) System: A system said to be LTV if it satisfies the linear property 
but not the time invariant. For LTV system, if input delayed by t0 seconds, the system satisfies 
superposition and homogeneity properties but output varies with time t0. A LTV system whose 
parameters change with time. The coefficients in the differential equations are time variant. 

 

 

 
 

 
 

Impulse response and response of LTI system 
Let us consider  

 

 
 

 
 

 
 

 

Signal approximation 
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Impulse response of LTI system due to an impulse input applied at t=0 is 

h (t) Hence  

This is known as convolution integral and it gives relationship among input signal, output 
signal and impulse response of system.LTI system completely characterized by impulse response 

 

 

Frequency response of LTI system: 
Let us consider LTI system with impulse response h(t) and y(t) is response of input signal x(t) . 
Input and output relationship of system given by convolution integral. 
. 

Fourier transform of input x(t) , output y(t) and impulse response h(t) are X(ω) , Y(ω) and H(ω) 
respectively. 
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Magnetude response is symmetric and phase response is anti symmetric. 

Response to Eigen functions 
If input to the system is an exponential function  then output y(t) 

 

 
 

 

Output is a complex exponential of the same frequency as input multiplied by the complex 

constant . An inputs signal is called Eigen functions of the system if the corresponding output 

is a constant multiple of the input signal. Thus the functions  all Eigen 

functions as we get 

the same function the output as in 
input. Properties of LTI system 
Commutative Property 

 

 

Associate property 
This implies that a cascading of two or more LTI system will results to single system with 
impulse response equal to the convolution of the impulse response of the cascading systems. 

 
 

 
 

Distributive Property 
This property gives that addition of two or more LTI system subjected to same input will results 
single system with impulse response equal to the sum of impulse response of two or more 
individual systems. 
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Static and dynamic system 
A system is static or memory less if its output at any time depends only on the value of its input at 
that instant of time. For LTI systems, this property can hold if its impulse response is itself an 
impulse. But convolution property, we know that the output depends on the previous samples of 
the input, therefore an LTI system has memory and hence it is dynamic system. 

Causality 
A continuous time LTI system is said to causal if and only if it impulse response is h(t) = 
0 for t<0, then integral becomes 

 

 

Stability: a continuous time system is bounded input , bounded output stable if and only if the 
impulse response is absolutely Integrable. 
Consider LTI system with impulse response h(t) . the output y(t) is 

 

 
 

 

If x(t) is bounded and  then 

For bounded output y(t) < ꝏ , the impulse response should be absolutely integrable. Hence 

 

Above equation gives necessary and sufficient condition for BIBO stability. 

Inevitability: 
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A system T said to be invertible if and only if there exits an inverse system T-1 for such that T T-1 is 
an identical system . For an LTI system with impulse response h1(t), this is equivalent to the 
existence of another system with impulse response h2(t) such that h1(t)* h2(t) = δ(t). 

 

Transfer Function of LTI System: 
Transfer function of LTI system defined as the ratio of Fourier transform of the output signal 

 to Fourier transform of the input signal .It is expressed as 

 

Inverse Fourier transforms of   gives the impulse response of the system. That is h(t) = IFT of 

 
In general Input and output relationship of continuous time causal LTI system described by 
linear constant coefficient differential equations with zero initial conditions is given by 

 

Where   are constant coefficients the order N refer to the highest derivative of y(t) in 

above equation. 
Apply Fourier Transform on both sides of above equation 

 

 

Distortion less Transmission System: 
Distortion less transmission through the LTI system requires that the response be exact replica 
of input signal. The replica may have different magnetude and delayed in time. 
Therefore, 

 Apply the 

Fourier transform 
 

 

 



 

115 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Where n is integer number 

Therefore, to achieve distortion less transmission through LTI system, magnetude response of 

system  must be constant over entire frequency range and phase response of the system 

  must be linear with frequency. 

Band width of signals and System 
Band width of signals: it is the range of significant frequency components present in the signal. A 
signal may have frequency components in the entire frequency range from -ꝏ to ꝏ. For any 

practical signals, the energy content decreases with frequency, only some of frequency 
components of signals have significant amplitude within a certain frequency band; outside this 
band have negligible amplitude. The amplitude of significant frequency component is within 

the     times (3dB) of 

maximum signal amplitude. 
System Band width: 
The band width of system is defined as the interval of frequencies over which the magnitude 

spectrum of  remains within times (3dB) its value at the mid band. The band width of system 

is 
 

 

(3dB) its value at the midband 

 

(3dB) of its value at the midband. 
Band width = 

     For distortion less transmission, a system should have infinite bandwidth. But due to physical 
limitations it is impossible to design an ideal filters having infinite bandwidth. 

For satisfactory distortion less transmission, therefore, an LTI system should have high bandwidth 
compared to the signal bandwidth. 

 

The filter characteristics of linear system: 
The system processes the input signal in a way that is characteristics of the system. The system 
modifies the spectral density function of input signal according to transfer function. It is observed 
that the system act as some kind of filter to various frequency components. Some frequency 
components are boosted in strength, some are attenuated, and some may remain unaffected.  
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Similarly, each frequency component suffers a different amount of phase shift in the process of 
transmission. LTI system acts as filter depending on the transfer function of system. The transfer 
function acts as weighting function to different frequency components of input signal. 

LTI system may be classified into five types of 
filters Low pass filter 
High pass filter 
Band pass filter 
Band reject 
filter All pass 
filter. 
The pass band of a filter the range of frequencies that allowed by the system without 
distortion. The stop band of filter is the range of frequencies that attenuated by the system. 

Ideal filters: 
An Ideal filter passes all frequency components in its pass band without distortion and completely 
blocks frequency components outside of pass band. There is discontinuity between pass band and 
stop band in frequency spectrum. But practical filters, there is gradual transition gap between pass 
band and stop band, The range of frequencies over which there is a gradual attenuation between 
pass band and stop band is called transition band. Filters with small gap are very difficult to design. 

Ideal Low Pass Filter: 
An ideal low pass filter transmits all frequency components below the certain frequency     rad/sec 

called cutoff frequency, without distortion. The signal above these frequencies is filtered 

completely. 
The transfer function of Idel Low pass filter given by 

 
 

 

Ideal High Pass Filter: 
An ideal high pass filter transmits all frequency components above the certain frequency

 rad/s

ec called cutoff frequency, without distortion. The signal below these frequencies is filtered 

completely. 
The transfer function of Idel high pass filter given by 
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Ideal Band Pass Filter: 
An ideal band pass filter transmits all frequency components within certain frequency band

 t

o rad/sec, without distortion. The signal with frequency outside this band is stopped 

completely. 

The transfer function of Idel band pass filter given by 

 
 

 
 

 

 

Ideal Band Reject Filter: 
An ideal band reject filter rejects all frequency components within certain frequency band
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to rad/sec. The signal outside this band is transmitted without distortion. 

The transfer function of Idle band reject filter given by 

 
 

 
 

 

 

Causality and Physical Realizability: Paley – Wiener Criterion 
For physically realizable systems, that cannot have response before the input signal applied. In 
time domain approach the impulse response of physically realizable systems must be causal that 
is h(t) =0 for t< 0, this is condition known as causal condition. In frequency domain, this criterion 
implies that a necessary and sufficient condition for magnetude response  to be physically 

realizable is 

This condition known as the Paley – Wiener criterion. To satisfy this condition the function   

 must be square integrable that is 

 

All causal systems that satisfy the Paley – Wiener criterion are physically realizable. 
Magnetude function    may be zero at some discrete frequencies but it cannot be zero over 

finite band of frequencies since this will cause the integral to become infinite. Therefore Idle filters 

are not physically realizable. It can be concluding that magnetude function cannot fall off to 

zero faster 
than exponential order. 

  is permissible 

 this Gaussian error curve is not permissible. 

But it possible to construct physically realizable filters close to the ideal filter characteristics.  
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Band Width and Rise Time: 
The system band width can be obtained from rise time , which can be derived from output 
response of the system. 
Rise time : the rise time tr of the output response is defined as the time the response takes to reach 
from 10% to 90% of the maximum value of the signal or in general it is the time of response to 
reach from zero to the final value of the signal. 

 

Relationship between Band width and rise time 

Consider ideal LPF , its transfer function is given by 
 

Where cut off frequency or 3 dB band width of 

filter Apply Inverse Fourier transform 

 
 

 

if input is impulse then output is  = h(t) 
 

 
 

 
Product of rise time and bandwidth is constant 
Rise time inversely proportional to the system band width. 

Concept of convolution in time domain: 
The process of expressing the output signal in terms of the superposition of weighted and time  
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shifted impulse response is called convolution. Convolution is a particularly powerful way of 
characterizing the input – output relationship of LTI systems. The mathematical tool for evaluating 
the convolution of continuous time signals is called convolution integral; for discrete time signals, 
it is called convolution sum . the convolution integral plays an important role in system analysis in 
time and frequency domains. It is important process for signal processing and detection in 
communication systems. 

The convolution integral 
Let   continuous time signals. Then convolution   

can be expressed as 

 
Thus the output of any continuous LTI system is the convolution of the input x(t) with impulse 

response h(t) of the system. 
Case I : if input signal is causal  that is x(t) = 0 for t<0 

Case II 
System is causal that is h(t) =0 for t<0 then 

Case III 
Both input signal and system are causal then 

Properties of 
convolution 
integral 
Commutative 
property 

Let   continuous time signals 
 

 
 

 =  

Distributive Property 
Associate property 

 

Shift property 
If the signal  shifted by  sec then convolution of 
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  and 

If  shifted by  and  respectively 

Convolution of function with impulse 
 

 

 

 =  
Convolution of function with unit step 

Any arbitrary function x(t) with unit step function u(t) 

Proof 
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Width property 
Let us consider finite duration of two signals   are T1 and T2 respectively 

then duration of y(t) =  is equal to the sum of duration of . 

T  = T1 + T2 
Also its   area under finite signals    are A1 and A2 respectively then the area under y 

(t) is product of both areas 
A = area under y (t) = area under  and area under  = A1 A2 

 
Convolution property of Fourier Transform 
Fourier transforms pair of two signals given 

by 
 

 
 

 
 

 
 

 

Convolution in frequency domain: 
Fourier Transform of  = 2Π Fourier transform of [ x(t) 

h(t) ] Fourier transform of [ x(t) h(t) ] =  

 

==  
 

 

 

Thus convolution in one domain is transformed a product operation in the other domain 
 

Graphical representation of Convolution 
When two signals are provided in graphical form, the convolution can be performed by 
graphical method. It involves the following steps. 

1.  For given signals   , draw the signals as function 
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2.  Draw the function of which is time 

 reversal of .then shift function by time t to form .  

3.  Draw the both signals on the 

axis with large time shift t along the negative axis. 

4.  Increase the time t along positive axis . Multiply 

the signals   and integrate over the period of two signals to obtain 

convolution at t. 

5. Increase the time shift step by step and obtain 

convolution using step 4. 

6.  Draw the convolution x (t) with the values 

obtained in steps 4 and 5 as function of t. 
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UNIT – 4 
LAPLACE TRANSFORM AND Z-TRANSFORM 

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of 
Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a 
signal, Laplace Transform of certain signals using waveform synthesis. Z–Transforms Concept of 
Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, 
Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse 

Z-transform, Properties of Z- transforms. 
 

Complex Fourier Transform 

Fourier transform is a tool which allows representing an arbitrary function  by continuous 

sum of exponential function of form of .These frequencies are restricted to the  axis in the 

complex plane. 

 
 

 

The variable always appears with j and hence the integral can also be written as function of  
 

 

 

Let a function  
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Limit of integration for  

 
 

Represent  as continuous sum of exponential of complex frequency   . This is 

special kind of Fourier Transform called as complex Fourier transform or Bilateral Laplace 

Transform. 

 
 
 

Unilateral Laplace transforms 

Functions of interest are causal that is f(t) = 0 for t<0 , the Laplace transform of such functions are 

termed as unilateral or one sided Laplace Transforms. 

 

Lower limit indicates inclusions of initial conditions, impulse functions and its derivatives at t = 

Convergence of Laplace Transform 

The Fourier Transform of f(t) converge if f(t) is absolutely integrable , similarly the necessary condition 

for convergence of Laplace Transform is absolute integrability of  
 

Existence of the Laplace Transform 

Laplace Transform exists if it converge in the given interval . These fore , the condition for its 

existence is that the function  should be absolutely integrable. 

Proof: Let   then it always satisfies the following 

inequality 

> 0 

Where M and are real constants 
 

 

= if is finite value.thus Laplace Trnasform exists 

 
 

Region of convergence (ROC) 
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Region of convergence (ROC): 

Region of convergence (ROC) defines the region where Laplace Transform exists. The range of 

values of s for which Laplace Transform converge is called as ROC .The variable s= is a 

complex number and 

display the complex plane referred to as s – plane where real part of s along the X – axis and 

imaginary part of s along the Y – axis. The ROC is a shaded region on the pole – zero plot, Laplace 

transform exists for values of s in the shaded region.Type equation here. 

Poles and zeros X(s) 

N(s) :Numarator polynomial in complex variable 

s D(s) : denominator Polynomial in complex 

variable s 

 
 

 

Function if . 
 

 

 

Roots of of numerator polynomial are called zero of X(s) because X(s) = 0 for those values s in the 

same way roots of denominator polynomialt are called poles of X(s) because X(s) = ꝏ for those 

values of s. Therefore poles of X(s) lie outside of ROC since X(s) does not converge at poles. The 

zeros, on the other hand may lie inside or outside of ROC. The poles and zeros of X(s) in finite s 

plane characterised the algebraic expression for X(s) to within scale factor. The representation of 

poles and zeros in the s plane is referred to as the pole-zero plots. 

      Properties of ROC: 

A complete specification of Laplace Transform requires not only the algebraic expression for X(s) 

but also the associated ROC. Different signals have identical algebraic expression for X(s) , so that 

their Laplace transform are distinguishable only by ROC. It has been explained some specific 

constraint on ROC for various class of signals. 
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Property 1: the ROC of X(s) consists of strips parallel to  axis in the s plane. 

The ROC of Laplace Transform of  consists of those values of s for which  is absolutely 

integrable. 
 
 

 
 

This condition depends only on values 

Property 2: For rational Laplace Transforms, the ROC does not contain any poles. 

X(s) = at poles , Laplace Transform does not converge at poles and thus the ROC cannot 

contain values of s that are pole. 

Property3: If  is a finite duration signal and is absolutely integrable then the ROC is the entire 

plane. 
 

is absolutely integrable  

For s to be in the ROC, the requirement is  

For , the Maximum value of over interval on which x(t) is non zero is  
 

 

bounded 
 

For , the Minimum value of over interval on which x(t) is non zero is  

  bounded 

  is absolutely integrable thus ROC includes entire s plane . 
 

 

Property4: If  is right sided and if line Re { s } = is in the ROC then all values of s for 

which Re { s } > will also be in the ROC. 

 
 

 For s to be in the ROC, the requirement is 
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  ,   as t 
 
 

 
 

  ,   as t 

X(t) cannot grow with out bound in –ve direction since x(t) = 0 for t < T1 

If a point s is in the ROC then all the points to the right of s that is all points larger real parts 

are in ROC, For this reason in this case is commonly referred to as right half s-plane. 

Property 5 : if  is left sided and if line Re{ s } = is in the ROC then the all values of s 

for which Re{ s } < will also in the ROC. 

Property 6: if  is two sided and if line Re{ s } = is in the ROC then the ROC consists of a 

strip in the s- plane that includes line Re{ s } = . 

If  is infinite duration signal then ROC is of the form   where  are 

real parts of two poles of X(s) , thus ROC is a vertical strip in the s plane between the vertical line 

Re {s} = 

and Re { s } = . all poles lies outside the ROC. 

Property 7: if the Laplace X(s) of x(t) is rational then its ROC is bounded by poles or 

extended to infinity . in addition , no poles of X(s) contained in the ROC. 

 
Property 7 : if Laplace transform of x(t) is X(s) is rational. 

If Laplace Transform X(s) contain more than one poles in the right side of S-plane , the ROC is 

the region in the plane to the right of right most pole. 

If Laplace Transform X(s) contain more than one pole in the left side of s-plane , the ROC is the 

region in the plane to the left of left most pole. 
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Linearity   Property 
 

 ,  

Linear combination of signals 
 

Where are any arbitrary 

constants Proof 

 
 

 
 

=   +   + .......+ 

= 
 

 

Time Shifting Property 

If signal  
 

Proof 
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Frequency shifting Property 

If signal 
 

Proof 

t 

= F(s+a) 

Scaling Property 
 

 

Proof 
 

 

 

 

 

 

Time differentiation Property 
 

If signal 
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For causal function , all initial conditions are zero 
 

Differentiation in s – Domain 
 

 

Proof 
 

Differentiation with respect of s 
 

 

2nd derivative with respect s 
 

 

Similarly, nth derivative with respect s 
 

Time integration Property 
 

 

Proof 
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+ = for causal signal 
 

For non-causal signal 
 

 

 

Integration in S domain 
 

 

Proof 
 

 

 

 

 

Time Convolution 
 

 

 

Proof 
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Multiplication in time domain or convolution in frequency domain 

 

 
 

 
Proof 

 

 
 

 

= 
 
 

 
 

 

Initial value theorem 

 
The initial value theorem is used to calculate f(0) from Laplace Transform of F(s) without the need of 

inverse Laplace Transform.It state that f(t) and it first derivative are Laplace transformable , then the initial 

value of f(t) is given by 
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= 
 
 

The discontinuity in f(t) at t=0 , the derivative of f(t) is an impulse function af amplitude equal in the value 

of discontinuity. 

 

 = { f(0+) – f(0-)} 

 
 

 
 

 

 
 

 
Final Value theorem 

 

 

Proof 

 

 
 

 
 

 

Inverse Laplace Transforms 
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Method of finding Inverse Laplace Transform 

 
1. Residue Method 

2. Partial fraction method 

 
1. Residue Method: 

 

 
The inverse formula can be expressed as a contour integral by the residue theorem 

 

 
 

 
 
 

 
It given by a line integral along a vertical line Re {s} in the region of existence of F(s) . in this integral the 

real is to be selected such that if ROC of F(s) is Re {s} > then 

 

 
Finding residues 

 
If  is a rational function of s it may be expressed as 

 
 
 

 

 
Where F(s) has n poles at s =  and has no poles at s =  the residue of F(s)  at 

s =  is given by 

Res { F(s) } =  

If n=1 function has only one first order pole 
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Res { F(s)  } = 
 
 
 

 
Partial fraction Expansion Method 

(a) X(s) is proper rational function 

 
The Partial fraction expansion of  the following two conditions 

 
 

(i) must be proper rational function that is degree of denominator polynomial in s is 

greater than the degree of numerator polynomial in s. 

 

 
 

(ii) A denominator in factored form.The structure of expansion depends on the nature of the 

factors in Q(s). the constants in the numerator of partial fraction expansion are called 

residues. 

 

 

 

 

Case 1: If D(s) contain real and distinct roots. 
 

 

The coefficient   can be obtained as 
 

If D(s) contain some complex conjugate roots 
 

 

 are complex conjugate roots 

Case 2: if Denominator contain multiple roots in the form of  
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(b) If X(s) is improper rational function 

Degree of N(s) greater than or equal to degree of denominator 

D(s) . Degree of N(s) = m, degree of D(s) = n 

 
 

 

 
 

 
Inverse Laplace transform of      (becomes proper rational function) and this can be 

evaluated by partial fraction expansion method. 

Inverse of Laplace transform of Q(s) can be computed using differentiation 

property. Application of Laplace Transform on Linear Systems 

The transfer function of LTI continuous system completely described the behaviour of system 

with any type of input. Consider LTI system with impulse

 response  Let 

  The transfer function 

of a system is defined as the ratio of the Laplace transform of the output signal to the Laplace 

transform of input signal with all initial conditions are zero. 

 
 

 

 

 

 

Causal LTI continuous time System described by an Nth order linear constant coefficient 

differential equation 



 

139 

 

 

 
 
 
 
 
 

Apply Laplace transform on both sides 
 
 

 
 

 

 
 

Steady state frequency response of LTI system 

Magnitude response = 

 
Phase Response =

 =  

Causality: 
For causal system,   and thus right sided. Therefore, the ROC associate with the transfer 

function of causal system is right half plane. However, if we know that the transfer function is rational, then 
it suffices to check that the ROC is the right half plane to the right of right most pole in s plane to conclude 
that the system is causal. 
Stability 
So far, we have seen that BIBO stability 0f continuous time LTI system is equivalent to its impulse response, 
being absolutely integrable, in which case its Fourier transform converge. Also the stability of an LTI 
differential system is equivalent to having all the poles of its characteristics equation having negative real 
part. for the Laplace Transform, the first stability condition translates to the following. 

 An LTI system is stable if and only if the ROC of transfer function contains j axis.

 A causal system with proper rational function H(s) is stable if and only if all of its poles are in left 

half of s-plane.

Advantages of Laplace Transforms 
 The higher order differential equations can be easily solved by using simple algebraic equations.

 It transforms higher order differential equations with initial conditions in the time domain into 

simple algebraic equations in the s-domain. Since the initial conditions are automatically included 

in the solution.

 Total solution of Differential equation can be obtained by using inverse Laplace transform.

 It is a power full tool for analysing system properties in the form of transfer function.
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 It can be used to analyse many classes of signals and systems which are not absolutely integrable.

 It provides solutions for many unstable systems such as impulse functions.

 Fourier transforms can be obtained from Laplace Transforms by 

substituting s = j Limitations

 Laplace transforms does not converge for some type of signals whose amplitude grows faster than time.

 The ROC is needed to obtain to obtain inverse Laplace transforms.

 It very difficult to solve complex integrals directly in the process of inverse Laplace transform.
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Z-TRANSFORMS 
 

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful mathematical 
tool to convert differential equations into algebraic equations. 

 
The bilateral (two sided) z-transform of a discrete time signal x(n) is given as. 

 

 
The unilateral (one sided) z-transform of a discrete time signal x(n) is given as 

 

 

 

Concept of Z-Transform and Inverse Z-Transform: 

 
Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as 

 
Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as 
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Inverse Z-transform: 
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Difference Between Laplace and Fourier Transforms: 

Laplace vs Fourier Transforms: 

Both Laplace transform and Fourier transform are integral transforms, which are most commonly 
employed as mathematical methods to solve mathematically modeled physical systems. The process is 
simple. A complex mathematical model is converted in to a simpler, solvable model using an integral 
transform. Once the simpler model is solved, the inverse integral transform is applied, which would provide 
the solution to the original model. 

 
For example, since most of the physical systems result in differential equations, they can be converted into 
algebraic equations or to lower degree easily solvable differential equations using an integral transform. 
Then solving the problem will become easier. 

 

Region of convergence in Laplace transform: 
 

With the z-transform, the s-plane represents a set of signals (complex exponentials). For any given 
LTI system, some of these signals may cause the output of the system to converge, while others cause the 
output to diverge ("blow up"). The set of signals that cause the system's output to converge lie in the region 
of convergence (ROC). This module will discuss how to find this region of convergence for any discrete-
time, LTI system. 

 
The region of convergence, known as the ROC, is important to understand because it defines the 

region where the z-transform exists. The z-transform of a sequence is defined as 
 
 

The ROC for a given x[n] , is defined as the range of z for which the z-transform converges. 
Since the z-transform is a power series, it converges when x[n]z−n is absolutely summable. 

 

must be satisfied for convergence. 

 

Properties of the Region of Convergence: 
 

The Region of Convergence has a number of properties that are dependent 

on the characteristics of the signal, x[n]. 

 The ROC cannot contain any poles. By definition a pole is a where X(z) is infinite. Since X(z) must 

be finite for all z for convergence, there cannot be a pole in the ROC.

 If x[n] is   a   finite-duration   sequence,   then   the   ROC   is   the   entire   z-plane,   except 

possibly z=0 or |z|=∞. A finite-duration sequence is a sequence that   is   nonzero   in   a   finite 
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 interval n1≤n≤n2. As long as each value of x[n] is finite then the sequence will be absolutely 

summable. When n2>0 there will be a z-1 term and thus the ROC will not include z=0. When n1<0 

then the sum

will be infinite and thus the ROC will not include |z|=∞. On the other hand, when n2≤0 then the ROC 

will include z=0, and when n1≥0 the ROC will include |z|=∞. With these constraints, the only signal, 

then, whose ROC is the entire z-plane is x[n]=cδ[n]. 

 
 

 
 

 

 

If x[n] is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the interior and exterior 

by a pole. A two-sided sequence is an sequence with infinite duration in the positive and negative directions. From the 

derivation of the above two properties, it follows that if -r2<|z|<r2 converges, then both the positive-time and negative-

time portions converge and thus X(z) converges as well. Therefore the ROC of a two-sided sequence is of the form -

r2<|z|<r2. 
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146 

 

 

 
 

Properties of Z- transforms: 
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The z-transform has a set of properties in parallel with that of the Fourier 
transform (and Laplace transform). The difference is that we need to pay special 
attention to the ROCs. In the following, we always assume 

 

 

and 
 
 

Linearity 
 

 

 Time Shifting
 

Proof: 
 

 
 

Define , we have and 
 

The new ROC is the same as the old one except the possible addition/deletion 
of the origin or infinity as the shift may change the duration of the signal. 

 

 Time Expansion (Scaling)
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The discrete signal cannot be continuously scaled in time as has to be 

an integer (for a non-integer  is zero). 

Therefore is defined as 

 
 
 

 
Example: If is ramp 

 
 

 1 2 3 4 5 6 
 

 1 2 3 4 5 6 

 

then the expanded version is 
 

 
 1 2 3 4 5 

 

6 
 

 0.5 1 1.5 2 2.5 3 

 
  

1  2 
 
3 

 

 0 1 0 2 0 3 
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where is the integer part of . 
 

Proof: The z-transform of such an expanded signal is 
 

 

Note that the change of the summation index from to has no effect as the 
terms skipped are all zeros. 
 

 Convolution

 
 

 
 
 
 

 

The ROC of the convolution could be larger than the intersection of and , 
due to the possible pole-zero cancellation caused by the convolution. 

 

 Time Difference

 
 

 
 
 
 

Proof: 
 

 
 

Note that due to the additional zero  and pole , the resulting ROC is  
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the same as except the possible deletion of caused by the added pole 

and/or 

addition of  caused by the added zero which may cancel an existing pole. 

 Time Accumulation

 
 

 

 
Proof: The accumulation of can be written as its convolution with : 

 

 
 
 

Applying the convolution property, we get 
 
 

 
 
 
 

 

as . 

 Time Reversal
 

Proof: 
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where . 
 

 Scaling in Z-domain

 
 
 

Proof: 
 

In particular, if , the above becomes 
 
 

 

The multiplication by  to corresponds to a rotation by angle in the z- 

plane, i.e., a frequency shift by . The rotation is either clockwise ( ) or 
 

counter clockwise ( ) corresponding to, respectively, either a left-shift or a 
right shift in frequency domain. The property is essentially the same as the 
frequency shifting property of discrete Fourier transform. 

Conjugation
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Proof: Complex conjugate of the z-transform of is 

 

 

Replacing by , we get the desired result. 
 

 Differentiation in z-Domain

 

Proof: 
 

i.e., 
 

Example: Taking derivative with respect to of the right side of 
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we get 
 

Due to the property of differentiation in z-domain, we have 
 

 

 
Note that for a different ROC , we have 
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UNIT – 5 

 SAMPLING THEOREM 

Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat 

top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, 

Introduction to Band Pass Sampling. Correlation: Cross Correlation and Auto Correlation of 

Functions, Properties of Correlation Functions, Energy Density Spectrum, Parseval’s 

Theorem, Power Density Spectrum, Relation between Autocorrelation Function and 

Energy/Power Spectral Density Function, Relation between Convolution and Correlation, 

Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal 

from Noise by filtering. 
 

Graphical and analytical proof for Band Limited Signals: 
Sampling thoerem: A continuous time signal can be represented in its samples and can be 

recovered back when sampling frequency fs is greater than or equal to the twice the highest 

frequency component of message signal. i. e. 

fs≥2fm 

Proof: Consider a continuous time signal x(t). The spectrum of x(t) is a band limited to fm Hz i.e. 

the spectrum of x(t) is zero for |ω|>ωm.Sampling of input signal x(t) can be obtained by multiplying 

x(t) with an impulse train δ(t) of period Ts. The output of multiplier is a discrete signal called  
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Here, you can observe that the sampled signal takes the period of impulse. The process of 
sampling can be explained by the following mathematical expression: 

 

Take Fourier transform on both sides. 
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To reconstruct x(t), you must recover input signal spectrum X(ω) from sampled signal spectrum 
Y(ω), which is possible when there is no overlapping between the cycles of Y(ω). 
There are three types of sampling techniques: 

 Impulse sampling.
 

 Natural sampling.

 Flat Top 

sampling. Impulse 

Sampling
Impulse sampling can be performed by multiplying input signal x(t) with impulse train 

 

of period 'T'. Here, the amplitude of impulse changes with respect to 
amplitude of input signal x(t). The output of sampler is given by 

 

To 
get the spectrum of sampled signal, consider Fourier transform of equation 1 on both sides 

 

This is called ideal sampling or impulse sampling. You cannot use this practically because pulse 
width cannot be zero and the generation of impulse train is not possible practically. 

Natural Sampling 
Natural sampling is similar to impulse sampling, except the impulse train is replaced by pulse 
train of period T. i.e. you multiply input signal x(t) to pulse train 
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Flat Top Sampling 
During transmission, noise is introduced at top of the transmission pulse which can be easily 
removed if the pulse is in the form of flat top. Here, the top of the samples are flat i.e. they have 
constant amplitude. Hence, it is called as flat top sampling or practical sampling. Flat top 
sampling makes use of sample and hold circuit. 

Theoretically, the sampled signal can be obtained by convolution of rectangular pulse p(t) with 
ideally sampled signal say yδ(t) as shown in the diagram: 
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Nyquist Rate 

It is the minimum sampling rate at which signal can be converted into samples and can be 

recovered back without distortion. 

Nyquist rate fN = 2fm hz 

Nyquist interval = 1/fN = 1/2fm seconds. 

Reconstruction of signal from its samples: 
Reconstruction 

Assume that the Nyquist requirement ω0 > 2ωm is satisfied. We consider two reconstruction schemes: 

• ideal reconstruction (with ideal bandlimited interpolation), 

• reconstruction with zero-order hold. 

Ideal Reconstruction: Shannon interpolation formula 
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Our ideal reconstruction filter has the frequency response: 
 

and, consequently, the impulse 

response Now, the reconstructed 

signal is 

 
which is the Shannon interpolation (reconstruction) formula. The actual reconstruction 
system mixes continuous and discrete time. 

 

 

The reconstructed signal xr(t) is a train of sinc pulses scaled by the samples x[n]. • This system 
is difficult to implement because each sinc pulse extends over a long (theoretically infinite) time 
interval. 
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A general reconstruction filter 
For the development of the theory, it is handy to consider the impulse-sampled signal xP(t) and its 

CTFT. 
 

Figure : Reconstruction in the frequency domain is lowpass filtering 
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Effect of under sampling – Aliasing 
Possibility of sampled frequency spectrum with different conditions is given by the 
following diagrams: 

 

 
 

Aliasing Effect 
The overlapped region in case of under sampling represents aliasing effect, which can be removed by 

 considering fs >2fm

 By using anti aliasing filters.
 

Samplings of Band Pass Signals 
In case of band pass signals, the spectrum of band pass signal X[ω] = 0 for the frequencies 
outside the range f1 ≤ f ≤ f2. The frequency f1 is always greater than zero. Plus, there is no aliasing 
effect when fs > 2f2. But it has two disadvantages: 

 The sampling rate is large in proportion with f2. This has practical limitations.

 The sampled signal spectrum has spectral gaps.
 

To overcome this, the band pass theorem states that the input signal x(t) can be converted 
into its samples and can be recovered back without distortion when sampling frequency fs 
< 2f2. 
Also
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Correlation Cross Correlation 
and Auto Correlation of 
Functions: 

Correlation 
Correlation is a measure of similarity between two signals. The general formula for correlation is 
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There are two types of correlation: 

 Auto correlation
 

 Cross correlation
 

Auto Correlation Function 
It is defined as correlation of a signal with itself. Auto correlation function is a measure of 
similarity between a signal & its time delayed version. It is represented with R(τ). 
Consider a signals x(t). The auto correlation function of x(t) with its time delayed version is given by 

 

Where τ = searching or scanning or delay parameter. 
If the signal is complex then auto correlation function is given by 

 

Cross Correlation Function 
Cross correlation is the measure of similarity between two different signals. 
Consider two signals x1(t) and x2(t). The cross correlation of these two signals R12(τ)R12(τ) is 
given by 
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Properties of Correlation Functions: 
 Auto correlation exhibits conjugate symmetry i.e. R (τ ) = R*(-τ )
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 Auto correlation function of energy signal at origin i.e. at τ =0 is equal to total energy of 

that signal, which is given as:
 

 

 Auto correlation function is maximum at τ =0 i.e |R (τ ) | ≤ R (0) ∀ τ
 
 
 
 
 
 
 
 
 
 

 
 Auto correlation function and energy spectral densities are Fourier transform pairs. i.e.

F.T[R(τ)]=SXX(ω) 

SXX(ω)= ∫R(τ)e−jωτdτ where -∞ < τ<∞ 

 R(τ)=x(τ)∗x(−τ)
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Properties of Cross Correlation Function 
 Auto correlation exhibits conjugate symmetry i.e. R12(τ)=R∗

21(−τ).

 Cross correlation is not commutative like convolution i.e.
 

R12(τ)≠R21(−τ) 
 If R12(0) = 0 means, if ∫x1(t)x∗2(t)dt=0 over interval(-∞,∞), then the two signals are said 

to be orthogonal.

 Cross correlation function corresponds to the multiplication of spectrums of one signal 

to the complex conjugate of spectrum of another signal. i.e.

R12(τ)←→X1(ω)X∗
2(ω) 

This also called as correlation theorem. 

Energy Density Spectrum: 
Energy spectral density describes how the energy of a signal or a time series is distributed 
with frequency. Here, the term energy is used in the generalized sense of signal processing; 
Energy density spectrum can be calculated using the formula: 

 

 

https://en.wikipedia.org/wiki/Energy_(signal_processing)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Energy_(signal_processing)
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Parseval’s Theorem: 
 

 
Power Density Spectrum 
The above definition of energy spectral density is suitable for transients (pulse-like signals) whose 

energy is concentrated around one time window; then the Fourier transforms of the signals 

generally exist. For continuous signals over all time, such as stationary processes, one must 

rather define the power spectral density (PSD); this describes how power of a signal or time series 

is distributed over frequency, as in the simple example given previously. Here, power can be the 

actual physical power, or more often, for convenience with abstract signals, is simply identified 

with the squared value of the signal. 

Power density spectrum can be calculated by using the formula: 

 

 
 The spectrum of a real valued process (or even a complex process using the above 

definition) is real and an even function of frequency:

 If the process is continuous and purely indeterministic, the autocovariance function 

can be reconstructed by using the Inverse Fourier transform

 The PSD can be used to compute the variance (net power) of a process by integrating 

over frequency:

 
 

https://en.wikipedia.org/wiki/Stationary_process
https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Even_function
https://en.wikipedia.org/wiki/Inverse_Fourier_transform
https://en.wikipedia.org/wiki/Variance
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Relation between Autocorrelation Function and Energy/Power 
Spectral Density Function: 

 

1. Relation between Autocorrelation Function and Energy Spectral Density Function: 
 
 

 

 

2. Relation between Autocorrelation Function and Power Spectral Density Function: 
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Relation between Convolution and Correlation: 
 

 
 

Detection of Periodic Signals in the presence of Noise by Correlation: 
 

Extraction of Signal from Noise by filtering. 
Whenever we wish to use correlation for signal detection, we use a two-part system. 

The first part of the system performs the correlation and produces the correlation value or 

correlation signal, depending upon whether we are doing in-place or running correlation. The 

second part of the system examines the correlation or correlation signal and makes a decision 

or sequence of decisions. See the block diagram given in Figure 
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UNIT-I 

Signal Analysis 
 

Short Answer Questions 
1. Define Signal. 

2. What are the major classifications of the signal? 

3. Define discrete time signals and classify them. 

4. Define continuous time signals and classify them. 

5. Define discrete time unit step &unit impulse. 

6. Write about discrete time exponential signals. 

7. Define continuous time complex exponential signal? 

8. Determine whether a Unit step signal U(t) is Energy or Power Signal 

9. State and prove any two properties of unit Impulse. 

10. Define system and Explain various types of systems. 

11. Define Causal & Non Causal Systems. 

12. Define static & Dynamic Systems . 

13. Define Stable & Unstable Systems. 

14. Define time invariant and time variant systems. 

15. What is the period T of the signal x(t) = 2cos (t/4)? 

16. Is the discrete time system describe by the equation y (n) = x(-n) causal or non 
causal ? 

17. What is the condition of LTI system to be stable? 

18. Define principle of Orthogonality. 

19. Derive the expression for mean square error? 

20. What is the period of the signal x(t ) = 10sin 12t + 4 cos18t 
 

Long Answer Questions 
1. A Rectangular Function is defined as 

 

 
 

 

Approximate the above function by A cos t between the intervals (0,2π) such that the mean 

square error is minimum. 

2. A rectangular function is defined by 
 

Approximate the above function by a single sinusoid sint between the intervals (0,2π).Apply 

the mean square error in this approximation. 

3. Explain the analogy of vectors and signals in terms of orthogonality 
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4. Derive the condition for mean square error when functions is approximated in 

set of mutually orthogonal . 

5. . Determine whether the following input-output equations are linear or non 
linear. 

a)   c)  

b)   d)  

6. Determine whether the following systems are time-varying or time-invariant. 

a)   c)  

b)   d)  

7. Find whether the following systems are static or dynamic. 

8. Find whether the following systems are causal or non-causal. 

a)   c)  

b)                                                         d)  

9. Find whether the following systems are stable or unstable. 

10. a)Define and discuss the conditions for orthogonality of 

functions. b)Prove that sinusoidal functions are orthogonal 

functions. 

11. a)Define orthogonal subspace. 

b)Prove that the complex exponential functions are orthogonal functions. 

12. Show that following signal are orthogonal over an interval 

[0,1] f(t) =1 

x(t) = √3 (1 -2t) 

13. Determine whether the following energy signal are energy or power signal 

then calculate the energy or power 

a) X[n] = (1/2)n u[n] b) X(t) = Ae-atu(t) a>0 

 
UNIT-II 

Fourier Series & Fourier Transforms 

 
Short Answer Questions 

1. Write down the exponential form of the Fourier Series 

2. Write down the trigonometric form of the Fourier Series 

3. Write short notes on Dirichlet’s conditions for Fourier series. 

4. Define the Parseval’s Theorem? 

5. State Parseval’s relation for continuous time Fourier Transforms. 

6. What are the difference between Fourier Series and Fourier Transform? 
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Long Answer Questions 
1. Write a short note on exponential Fourier spectrum. 

2. Find the exponential Fourier Series for the full wave rectified sine wave as shown 
below 

for the interval (0,2π) with an amplitude of ‘A’ 

3. a)State the conditions for the existence of Fourier Transform of a signal. 
b) Find the Fourier Transform of the signum function and plot it’s amplitude and 

phase spectrum. 

4. Obtain the Fourier Transform of the following functions. 

(i) Impulse function. 

(ii) DC Signal. 

(iii) Unit step function. 

5. Find the Fourier Transform of the following 
i) Real exponential signal, x(t)= u(t) a>0 
ii) x(t)= u(-t) a<0 

iii) Rectangular pulse, x(t) = -1 -T ≤ t ≤ T 
= 1 |t| <T 

6. Find the Fourier Transforms of 

(a) cos wt u(t) (b) sin wt u(t) 

7. State & Prove following properties of Fourier Transform. 

a) Convolution in Time domain 

b) Time shifting 
 

8. Find the trigonometric Fourier series and the complex exponential Fourier series 

for the waveform shown in figure 
 

9. Find the trigonometric and exponential Fourier series for the wave form shown in figure 
 

 

10. .a) determine the trigonometric Fourier series of a full wave rectified cosine 

function shown in figure. 
b) Derive the corresponding exponential Fourier series 
c) Draw the complex Fourier spectrum 
d) Find the exponential Fourier series directly 
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11.  

12.  

13. Find the trigonometric fourier series for the periodic signal x(t) shown in figure 
 

14. Find the trigonometric Fourier series for the periodic signal x(t) shown in figure 

 

15. Find the Fourier transform of the signal 

= 0 otherwise 

16. Find the Fourier transform of the following signals: 

a)    e)  

b)     f)  

c)    g)  

d)     h)  

17. Using properties of Fourier transform find the Fourier transform of the following: 

a)    g)  

b)     h)  

c)    i)  

d)     j)  

e)    k)  

f)  
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UNIT-III 

SIGNAL TRANSMISSION THROUGH 

LINEAR SYSTEMS 

Short Answer Questions 
1. Define Signal Bandwidth and System Band width. 

2. Write a notes on Ideal Filters. 

3. Explain the difference between a time invariant system and time variant system? 

4. What is the effect of under sampling? 

5. Discuss about the conditions for physical reliability of an LTI system. 

6. Derive an expression for the transfer function of an LTI system. 

Long Answer Questions 
1. Explain causality and physical reliability of a system and hence give Daley-

wiener criteria. 

2. Obtain the relationship between the band width and rise time of ideal low pass 
filter. 

3. Explain distortion less transmission through any system? Obtain condition 

for the same? 

4. Write notes on Ideal Filters. 

5. Find and sketch the convolution of two 

signals x (t) = 2 ( (t-5) / 2) and h (t) =  

( ( t-2) / 4). 

6. Find the Convolution of the following signals are given 

as x(t) = e-3t u(t) and  h(t) = u(t-1). 

 

UNIT-IV 

LAPLACE TRANSFORMS & Z TRANSFORMS 

Short Answer Questions 
1. Define Bilateral and unilateral Laplace Transform. 

2. Define inverse Laplace Transform. 

3. State the property for Laplace Transform. 

4. State the time shifting property for Laplace Transform. 

5. What is pole and zero plot. 

6. State initial value theorem and final value theorem for Laplace Transform. 

7. State Convolution property of the Laplace Transform. 

8. What is region of Convergence? 

9. What are the Properties of ROC in the Laplace Transform? 

10. Define Z Transform. 
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11. What are the two types of Z Transform? 

12. What is the time shifting property of Z Transform? 

13. State convolution property of Z Transform. 

14. State the methods to Find inverse Z Transform. 

15. State multiplication property in relation to Z Transform. 

16. State parseval’s relation for Z Transform. 

17. What is the relationship between Z Transform and Fourier Transform. 

18. Define one sided Z Transform and two sided Z Transform. 

19. What is the Z-Transform of sequence x(n)=anu(n)? 

20. The final value of x(t)=(2+e-3t) u(t) is obviously x(∞)=2. 

Long Answer Questions 
1. Find the Laplace Transforms of the following functions 

 

a. Exponential function 

b. unit step function 

c. sine & cosine 
 

2. Properties of ROC of Laplace Transforms. 

3. Consider the following signals, Find Laplace Transform and 

region of convergence for each signal. 

a) x ( t ) = e-2t u(t) + e-3t u(t) 

b) x(t) = e-4t u(t) + e-5t sin 5t u(t) 

4. Determine the function of time x(t) for each of the following Laplace 

Transforms (a)  

(b)  

(c)  

 

5. Determine the function of time x(t) for each of the following Laplace Transforms and 

their associated region of convergence 

(a)  

(b)  

6. Find the inverse Laplace Transforms of the following functions (a) 

 

(b)  
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7. Find the inverse Laplace Transforms of the following functions (a) 

 

(b)  

8. Find the inverse Laplace Transform and initial and final value of a given function 

 

9. a)Find the Inverse Laplace transform 
of 

b) Find the ROC of left sided functions. 

s  1 
 

 

s2  6s  25 

10. Determine the Laplace transform and associated region of convergence and 

pole-zero plot for the following function of time x(t)=e2t u(-t)+e3t u(-t) 

11. Find the Laplace transform of [4e-2tcos 5t-3e-2tsin 5t]u(t) and its ROC. 

12. Find the z-Transform and ROC of the following 

sequences i.  

ii.  

13. Find the z-Transform of the  

 
b)  

c)  

14. A finite Series sequence x[n] is defined as x[n]={5,3,-2,0,4,-3}.Find X[z] and 

its ROC. 

15. Find the z-Transform of the following 

sequences a)  

b)  

c)  

16. By first differentiating X(z) and using the appropriate properties of 

the z- Transform determine the sequence for which the z-Transform is 

each of the following 
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a)  

b)  

17.  Find the inverse z Transform of   when ROC 

is a)  

b)  

18. Using the power Series expansion technique, Find the inverse z-Transform 

of the following X(z): 

19. Determine the Laplace transform and associated region of 

convergence And pole-zero plot for the following function of time 

(a) X(t) = t e-at u(t) 

(b) X(t) = e-at cos(wt) 

20. Determine initial and final value of the system whose transfer function is 

given as X(s) = (5s+50) / s(s+5) 

21. Find the inverse Laplace transform of 

H(s) = 3s+7 / S2-2s-3 Using partial fraction method 

22. What are the methods by which inverse Z-transformation can be found out? 

23. a)Explain the properties’ of the region of convergence of X(z). 

b) Discuss in detail about the double sided and single sided Z-transform. Correlate 

Laplace transform and Z-transform in their end use. 

24. Find the first 4 terms of causal signal whose z transform is as under 

4  z
1 

 X (z) 
2  
2z

1 

 z
2  

. 

25. State and prove the convolution and scale change properties in z transform. 

26. Prove that the final value of x (n) for X (z) = z2/[z-1][z-0.2] is 1.25 and its initial 

value is unity. 

27. Prove that the sequences x1 (n) =an u (n) and x2 (n) = - an u (-n-1) have the 
same X (z) and differ only in ROC. Plot their ROCs. 

28. Determine Z transform of following 
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          sequence (a). x[n] = [1,2,3,4,5,0,7} 

(b) x[n] = [1,2,3,4,5,0,7] 

29. Determine inverse Z transform by using power series method X(Z) = 

1 / (1-az-1) |z| > |a| 

30. Find inverse Z transform of given functions (a)  X(Z) 

= log (1 /1-az-1) 

(b) X(z) = log (1 / 1-a-1z) 

31. (a) Given X(Z) = z / (z-1)3 Find x[n] using contour integration method ? 

(b) Distinguish between one sided and double sided Z transform ? 
 

UNIT-V 

Sampling & Correlation 
1. State Sampling theorem. 

2. What is meant by aliasing? 

3. What are the effects of aliasing? 

4. Define Nyquist’s rate. 

 

Long Answer Questions 
1. What is the Nyquist’s Frequency for the signal x(t) =3 cos 50t +10 sin 300t – cos100t ? 

2. For the analog signal x(t)=3 cos 100πt 

a) Determine the minimum sampling rate to avoid aliasing 

3. Determine the Nyquist’s rate and interval corresponding to each of the following signal 

 

 

4. Determine and sketch the auto correlation function of given exponential pulse. x(t) = 

e-at u(t). 

5. Show that auto-correlation function and energy density spectrum form a  Fourier transform 

pair. 

6. Show that auto-correlation function and power spectral density form a Fourier transform 

pair. 

7. State sampling Theorem for band-limited signals. Prove the theorem graphically. 

What is Aliasing effect? 

8. Define Autocorrelation Function and explain its properties ? 
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9. Define Cross-correlation Function and explain its properties ? 

10. Define Energy spectral density and explain its properties ? 

11. Define Power spectral density and explain its properties ? 

12. Determine the autocorrelation function and energy spectral density of x(t) = e-at u(t). 

13. Find the autocorrelation of the signal x(t) = A 

sin ( 0t   ) 

14. If x(t) = sin 0t , and 

i) R ( ) ii) ESD 
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5. https://youtu.be/VDy8nwyKaAw 
6. https://youtu.be/PZfZGbbBuxk 
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7.STUDENT SEMINAR TOPICS 
LIST OF TOPICS FOR STUDENT SEMINARS: 
 

1. Orthogonality in Complex functions 

2. Elementary signals 
3. Dirichlet’s conditions 
4. Fourier Transform of Periodic Signals 
5. Hilbert Transform 
6. Causality and Paley-Wiener criterion for physical realization 
7. Relation between L.T and F.T of a signal 
8. Effect of under sampling – Aliasing 
9. Relation between Convolution and Correlation, 
10. Extraction of Signal from Noise by Filtering. 
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8.PREVIOUS UNIVERSITY QUESTION PAPERS TO PRACTICE 
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
0; 

elsewhere 
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Code No: 133BQ 

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD 

B.Tech II Year I Semester Examinations, May/June - 2019 

SIGNALS AND STOCHASTIC PROCESS 

(Common to ECE, ETM) 

Time: 3 Hours Max. Marks: 75 

 

Note: This question paper contains two parts A and B. 
Part A is compulsory which carries 25 marks. Answer all questions in Part A. 
Part B consists of 5 Units. Answer any   one   full   question   from   each   unit. 
Each question carries 10 marks and may have a, b, c as sub questions. 

 

PART- A 
(25 Marks) 

1.a) Give the condition for the physical reliability of a system. [2] 
b) What are the properties of convolution? [3] 
c) State any two properties of Fourier series. [2] 
d) Find the Fourier transform of the signal x(t) = 20 sinc (20t). [3] 
e) Explain the concept of region of convergence for Laplace transforms. [2] 
f) Write the differentiation in time property of Laplace transform. [3] 
g) Define random process. [2] 
h) Give the relation between correlation and Convolution. [3] 
i) Verify   that   the   cross spectral   density   of two uncorrelated stationary 

random processes is an impulse function.   [2] 
j) Define cross –spectral density and its examples. [3] 

 

 

 
2. Graphically convolve the 
signals 

PART-B  
(50 Marks) 

X (t)  
1;

 



for  T  t  T 

elsewhere 

 
and X 2 (t)  

1; for  2T  t  2T 




[10] 

OR 
3.a) 

b) 
What is an LTI system? Explain the properties of it. 
Find whether x (t) = A e-α (t) u(t) , α > 0 is an energy signal or not. 

 
[5+5] 

4.a) 
b) 

Obtain the Fourier series coefficients for x(t) = A Sin 
ω0t. What is the Significance of Hilbert Transform? 
Explain. 

 
[5+5] 

OR 
5. Define Fourier transform. Explain the properties of Fourier transform. [10] 

 

6.a) Find the Laplace transform of x(t) = -t2e-at u(-t) and indicate its ROC. 
b) Find the inverse Laplace transform of 

R16 
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x(s) = 5(s+5)/ s(s+3) (s+7); Re(s) > -3. [5+5] 
OR 

7.a) Find the inverse Z- transform 
of 

1 3z1 
X (z)  

1 3z1 
 2z2 

for different possible ROCs. 

b) Give the relationship between z-transform and Laplace Transform. [7+3] 
 

8.a)   A Random Process X(t)= A Cos (2πfct) , where A is a Gaussian Random Variable with 
zero mean and unity variance, is applied to an ideal integrator, that integrates with 
respect to ‘t’, over (0,t). Check the output of integrator for stationarity. 

b) A random Process is defined as X(t)=3 Cos(2πt+Y), where Y is a random Variable with 
p(Y=0)=p(Y=π)=1/2. Find the mean and Variance of the Random Variable X(2). [5+5] 

OR 
9.a) State and prove properties of cross correlation function. 

b) If the PSD of X(t) is Sxx(ω ). Find the PSD of dx(t)/dt. [5+5] 
 

10.a) Find and plot the Autocorrelation function of 
(i) Wide band White noise (ii) Band Pass White noise. 

b) Derive the expression for the Cross Spectral Density of the input Process X(t) 
and the output process Y(t) of an LTI system in terms of its Transfer function. [5+5] 

OR 
11. The auto correlation function of a random process X(t) is RXX(τ) = 3+2 exp (−4τ2) 

a) Evaluate the power spectrum and average power of X(t). 
b) Calculate the power in the frequency band −1/√2 < ω < 1/√2. [5+5] 
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8.a)   A Random Process X(t)= A Cos (2πfct) , where A is a Gaussian Random Variable with 
zero mean and unity variance, is applied to an ideal integrator, that integrates with 
respect to ‘t’, over (0,t). Check the output of integrator for stationarity. 

b) A random Process is defined as X(t)=3 Cos(2πt+Y), where Y is a random Variable with 
p(Y=0)=p(Y=π)=1/2. Find the mean and Variance of the Random Variable X(2). [5+5] 

OR 
9.a) State and prove properties of cross correlation function. 

b) If the PSD of X(t) is Sxx(ω ). Find the PSD of dx(t)/dt. [5+5] 
 

10.b) Find and plot the Autocorrelation function of 
(i) Wide band White noise (ii) Band Pass White noise. 

b) Derive the expression for the Cross Spectral Density of the input Process X(t) 
and the output process Y(t) of an LTI system in terms of its Transfer function. [5+5] 

OR 
12. The auto correlation function of a random process X(t) is RXX(τ) = 3+2 exp (−4τ2) 

a) Evaluate the power spectrum and average power of X(t). 
b) Calculate the power in the frequency band −1/√2 < ω < 1/√2. [5+5] 
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Code No: 153BT 

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD 

B.Tech II Year I Semester Examinations, March - 2021 

SIGNALS AND SYSTEMS 

(Common to ECE, EIE) 

Time: 3 hours Max. Marks: 75 

Answer any five questions 

All questions carry equal 

marks 

- - - 

 
1.a) State and prove the properties of Impulse Function. 

b) How to approximate the given signal using complete set of orthogonal functions? 
Explain with one example. [6+9] 

 
2.a) Find the Exponential Fourier series of train of impulses. 

b) Find the Fourier Transform of the signal x t   ea t  . [7+8] 
 

3.a) Find and sketch the impulse response of Ideal Band pass 
Filter. 

b) Find the convolution between the following signals: 

xt   eatu t ;ht   ebtu t 




[7+8] 

 

4.a) Find the impulse response of the system described by the differential equation. 

y t   5yt   4 y t   6x t 
b) State and prove initial final value Theorems of Z-transform. [7+8] 

 
5.a) State and prove Sampling theorem for band limited signals. 

b) Derive the relationship between Autocorrelation function and Power spectral 
density function. [9+6] 

 

6.a) Find the Hilbert Transform of the 
signal 

 

xt   cost   sint  . 
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b) Check the stability of the system y t   tx t  .  [7+8] 

7.a) Derive the conditions for distortion less transmission through a system. 
b) State and prove the multiplication theorem of Fourier Transform. [7+8] 

 
8.a) State and prove time shifting property of Laplace Transform. 

b) State and prove convolution theorem of z-transform. [7+8] 
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Code No: 153BT 

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD 
B.Tech II Year I Semester Examinations, October - 2020 

SIGNALS AND SYSTEMS 
(Common to ECE, EIE) 

Time: 2 hours Max. Marks: 75 

Answer any five questions All 

questions carry equal marks 

- - - 
 
1.a) Show that f(t) is orthogonal to signals cost, cos2t, cos3t, … cos nt for all integer values of n, 

n≠0, over the interval (0,2π) if 𝑥(𝑡) = { 
1, 𝑓𝑜𝑟 0 < 𝑡 < 𝜋

 
−1, 𝑓𝑜𝑟 𝜋 < 𝑡 < 2𝜋 

b) Discover the analogy of vectors and signals in terms of orthogonality. [6+9] 
 
2.a) Estimate the mean square error value of a function f(t). 

b) Sketch the following signals (i) r(t)-r(t-1)-r(t-3)+r(t-4) (ii)𝜋 (
𝑡−2

) + 𝜋(2𝑡 − 3.5)[7+8] 
2 

 

3.a) Assume that T=2, determine the Fourier series expansion of the signal shown below 
figure 1 with amplitude of ±1. 

 Figure: 1 
b) Prove the following properties of the Fourier transform: (i) duality (ii) modulation.[8+7] 

 
4.a) Determine the exponential Fourier series from trigonometric Fourier series. 

b) Solve the Fourier transform of the rectangular pulse. [6+9] 
 
5.a) Find the convolution of the rectangular pulse given below figure 2 with itself. 

 

Figure: 2 
b) Explain causality and physical relizability of a system and give Paley wiener criterion. 

[8+7] 
 

6.a) A system produces an output of y(t)= e-t u(t) for an input of x(t)= e-2t u(t). Determine the 
impulse response and frequency response of the system. 

b) Compare the signals and system bandwidth. [9+6] 
 
7. Evaluate the Laplace Transforms of the following functions: 

a) Exponential function b) Unit step function c) Damped sine function. [15] 
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8.a) Prove that for a signal, auto correlation and PSD form a Fourier transform pair. 
b) A function f(t) has a PSD of S(w). Find the PSD of i) integral of f(t) and ii) time 

derivative of f(t). [7+8] 
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Code No: 153BT 

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD 
B.Tech II Year I Semester Examinations, March- 2022 

SIGNALS AND SYSTEMS 
(Common to ECE, 

EIE) 
Time: 3 Hours Max. Marks: 75 

Answer any five 

questions All questions carry 
equal marks 

- - - 
 

1. a) Define Dirac Delta function, draw its waveform and Summerize its properties. 
   
               b) Obtain the condition under which two real signals f1(t) and f2(t) are said to be     
orthogonal to each other. Hence, prove that Sin nω0t and Cos mω0t are orthogonal to each other for 

all integer values of m, n. [6+9] 
 
2. Classify the signals under different categories and then explain the same. [15] 

 
a. State the existence conditions of fourier series. 

b) Find the Trigonometric Fourier series coefficients and build Fourier series for the 
following signal. 

 
c) Explain about Complex fourier spectrum. [4+7+4] 

 
4.a) Obtain the Fourier transform of the following signals 

i) 4 Cos 2ω0t ii) e-4t u(t) 
b) State and prove the following properties of Fourier transform. 

i) Convolution in time domain ii) Differentiation in time domain. [8+7] 
 

              5.a)With the help of plots, determine the convolution of the following two signals in time 
domain.x1(t) = e-4t u(t) and x2(t) = u(t+4). 

b) Explain about stability and causality of an LTI system. [10+5] 
 
6.a) Perform the graphical convolution of the following signals: 

x t  eatu t; x t   u t   u t  3 . 
b) List and explain the properties of convolution and prove any one. [10+5] 

 
7.a) Determine the Laplace transform of the following two signals. 

i) e-at sin (bt)u(t) ii) x(t) = t e-at u(t) 
b) State and prove the following properties of z-transform 

i) Time shifting ii) Convolution [8+7] 
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8.a) State and explain the sampling theorem for band limited signals with graphs analysis. 

b) Define cross correlation function? State and prove the properties of cross correlation 
function. [7+8] 
SAMPLE INTERNAL EXAMINATION QUESTION PAPER WITH KEY 
 

PART-A 
I. Choose the correct alternative: 

Answer All Questions. All Questions carry Equal Marks.             Marks: 
1X10=10 

1. A signal can be represented in        [         ] 

a)Time domain b) frequency domain c) both a & b d) none of the above 
 

2. δ(n)=            [         ] 
 a) u(n)+u(n-1)  b) u(n)u(n-1)  c) u(n)-u(n-1)  d) u(n-1)+u(n) 
 

3. x(t)=𝑒−5𝑡𝑢(𝑡) is a          [         ] 
 a) Power signal  b) energy signal  c) Neither a or b d) Both a & b 
 
4. A set of functions {gr(t)} mutually orthogonal over the interval [t1,t2] is called a closed or complete set if there exist no function x(t) such 

that                              [         ] 

 a) ∫ 𝑥(𝑡)
t2

t1
gr(t)dt = 0 b) ∫ 𝑥(𝑡)

t2

t1
gr(t)dt = ∞       

            c) ∫ 𝑥(𝑡)
t2

t1
dt = 0  d) ∫ 𝑥(𝑡)

t2

t1
dt = 1 

 

5. If we approximate a function by its orthogonal function the error will be   [         ] 
 a) Zero  b) small c) large d) infinity 
 
6. The trigonometric Fourier series representation of an odd function consists of   [         ] 
 a) Cosine terms only b) sine terms only c) Both sine and cosine terms d) None 
 
7. How much phase shift does an Hilbert transformer impart on the input?              [         ] 
        a) 45°     b) 180 °     c) 135°     d) 90 ° 

 
8. The phase spectrum of exponential Fourier series is _______ about vertical axis  [         ] 
 a) Symmetrical b) Anti Symmetrical c) Both a&b d) None 
 
9. Fourier transform is applicable to        [         ] 
a) Only periodic signals   b) Only aperiodic signals c) Both a&b d) only random signals 
 
10. The relation between a signum function and a unit step function is sgn(t)=   [         ] 

 a) u(t)-u(-t)   b) u(t)-1 c) 2u(t)  d) 2u(t)-1 
 

 
II. Fill in the Blanks: 

11. For an anti -causal x(t)=0 for ____________________ 

12. Recursive Systems are basically characterized by the dependency of its output on _______ 

13. Discrete time signals are ____________________ in time __________________ amplitude. 

14.  ___________________ is defined as any physical quantity that varies with time, space or any other independent variable 

15. The characteristics of an LTI system are completely determined by its _________response. 

16. A signal which cannot be represented by mathematical equation is called______________. 

17. The representation of signals over a certain interval of time in terms of linear combination of orthogonal signals is called  __________________ 

18. For an LTI discrete system to be stable, the square sum of the impulse response should be 

19. ______________ the Fourier transform of ejω
0t. 

20. The Fourier spectrum exists only at ______________________ frequencies.  

 

PART-B 
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III. Answer any TWO of the following questions     2 X 5M = 
10M 

1. a) Derive the expression for component vector of approximating the function f1(t) over f2(t) and also 

prove    

that the component vector becomes zero if the f1(t) and f2(t) are orthogonal.                                  (2.5M) 

   b) Define Fourier transform. Find  the Fourier transform of x(t) =e-at u (t).   (2.5M) 

                                                                                

 

 2. a). How do you approximate a signal using orthogonal functions?                                              (2.5M) 

    b) . Determine the Trigonometric  Fourier Series for the periodic sawtooth waveform shown below.  

(2.5M) 

 

       
 

3.a) Write short notes on energy signal. Find whether x (t) = A e-α (t) u(t) , α > 0 is an energy signal or not.                                              

                                                                                                                                                            (2.5M)   

  b)  Determine  the  exponential fourier series for the impulse train                                                            (2.5M) 

 

   
 

4.  a) Distinguish between i) linear and non-linear systems, ii) time invariant and time variant systems? 

(2.5M) 

     b)  State and prove the properties of Fourier transform. (any three)                                                  (2.5M) 

 

 
 

Key answers: 
I. chooses 

1. C 6. B 

2. C 7. D 

3. B 8. B 

4. A 9. C 

5. B 10. D 

 
II. Blanks 

11. t>0 16. Deterministic  

12. Present input, Past input, 

Previous outputs 

17. Fourier series 

13. Discrete, continuous 18. Finite 

14. Signal 19. 2πδ(ω – ω0) 

15. Impulse 20. Discrete 
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